
To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

Low Power Hardware for a High Performance PDA

Michael Culbert,
System Architect,

Apple Computer Inc.
Cupertino, California 95014

Abstract

The first product in the Newton family operates under
severe constraints in the areas of performance, cost, heat
dissipation, power consumption, scalability, size and
weight. This talk gives an overview of the Newton
MessagePad system hardware, and focuses on the
techniques and tradeoffs used to overcome these
constraints. In particular, synergetic migration of
functions from hardware to software and vice-versa will
be discussed.

Introduction

The Newton family of products has one overriding goal:
to provide the user with a fluid and simple man/machine
interface. No Newton user should have to realize that they
are using a computer. They should be able to use the
Newton as they would use a piece of paper. As they
become more accustomed to the Newton, new and
powerful applications should become visible. In the
pursuit of this goal, several key design choices must be
considered, not the least of which are size, weight, cost,
and power consumption. This paper concentrates on the
power consumption of both the hardware and software of
the current MessagePad system.

The Processor

Early in the design process, it became apparent that
processor performance comparable to Intel 486 class of
processor was required in order to give the user a smooth
user experience, given the software environment that we
had begun to create. Of more than a dozen processors that
were evaluated, only a small number could meet most of
the guidelines established for power consumption, cost
and performance, and fully static operation (allowing the
clock to be stopped at any time).

 Newton, MessagePad, AppleTalk and LocalTalk are
trademarks of Apple Computer, Inc.

Only one processor, the ARM3 from Acorn Computers
Limited (United Kingdom), met all of the goals. The
ARM3, however, was not a perfect fit. The ARM3 had no
integral memory management unit, and Acorn had no
resources to develop one. Apple went to Acorn, and jointly
with VLSI Technology Incorporated, created a new
company now called Advanced Risc Machines, Limited
(United Kingdom). The purpose of this company was to
provide a development resource to keep the ARM
architecture current and competitive in this new market
arena.

128K
x8x5

SRAM

1024K
x16x2

MROM

Serial

ARM
610

LCD
IR

Module

ADC/
MUX

Tablet

ASICPCMCIA

40
MHz

32
kHz

DMA, Timers, Clk,
Clk Ctl, Int. Ctl

Fig. 1: MessagePad™ Simplified block diagram

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

MIPS/Watt is an important metric for evaluating system
performance over time. This term was coined early in our
processor search, and most of our processor suppliers (as
well as the rest of the industry) now recognize and use this
new benchmark. The ARM processor has about twice the
MIPS/Watt rating of its closest competitor.

The creation of Advanced Risc Machines made the
future of the ARM architecture more certain, as well as
creating a resource to design and implement a full 32 bit
version of the ARM architecture with an integral MMU.
The task was then to create a system around this processor
that allowed us to take maximum advantage of the
architecture.

The ARM610 processor, as it is known today, has
several advantages over its current competition. The
design consists of several flexible small blocks. There are
three primary blocks: the processor core, known as the
ARM6 core, the memory management unit that
incorporates Apple’s domain memory management
architecture, and a low power cache. ARM describes its
processor architecture as not being a "pure" RISC. The
departures from purity permit ARM code to be as dense as
more traditional CISC architectures. This has several
benefits, ranging from the obvious cost savings of being
able to squeeze more code into fewer bytes of memory, to
the slightly less obvious improvement in cache
performance. This subtly improves both performance and
power consumption of the overall system.

The memory management unit of the processor was
carefully crafted to save system power and enhance
performance. Permissions are assigned on 1K sub-pages
while virtual mappings are done on more traditional 4K
page boundaries. This permission mapping scheme allows
effective management of small blocks of memory for
independent processes. To decrease the power consumed
by context switches, we took advantage of the fact that we
have a large (32 bit) virtual address space within a small
physical memory space. The cache of the ARM processor
is a virtual cache, and in a more traditional operating
system approach, the translation lookaside buffer (TLB) of
the MMU and the cache would have to be flushed on each
context switch. By assigning each process its own virtual
address space within the OS, we have avoided flushing the
TLB or the cache at every context switch. The other major
cause of TLB flushes is permission changes in the MMU
page tables. Apple's domain memory management allows
us to avoid almost all of these flushes as well. The domain
memory management allows the OS to assign pages or
sections of memory an ID. This ID allows the OS to group
pages or sections together as a domain. Permissions can be
globally changed on domains by changing the contents of
a single internal 32 bit register. Changing permissions
requires no flushing of the TLB or reading of the page

tables. Rather than having to switch almost the entire page
table and then flush the TLB, certain tasks like garbage
collection can simply write to a single 32 bit register to do
its permission modifications.

Cache miss rate (as opposed to cache speed) is one of
the important factors optimized for in the design of the
core Newton operating system (OS). We chose to use the
cache organization that had been designed for the ARM3,
ARM610’s 26 bit predecessor. Though the cache had not
been designed with our requirements in mind, it had
nonetheless been originally designed with cost, power,
and performance in mind. It needed to be small in order to
meet the die area requirements of the processor, but it
needed to be the most effective small cache that could
support our system. It takes advantage of features of the
ARM instruction set to keep power dissipation low. Its
fairly unusual 64-way set associative organization,
random replacement architecture was well suited to our
requirements. This architecture ultimately led to a miss
rate of less than 10% in our production system.

The Power System

The choice of a power supply voltage has major cost,
performance and power tradeoffs. We initially chose a
3.3V ±10% main supply. This choice forced us to drive
many of our silicon partners to produce 3V memories,
communications peripherals, and ASICs earlier than they
had originally planned. As the system design became more
firm, and the cost implications of a 3V design became
clear, we had to make a choice. The system performance
would have be reduced significantly, the cost would be
increased by more than 50%, or the battery life would be
degraded by more than a factor of two. It was clear that we
could not sacrifice performance or cost for this product, so
we made the necessary choice to change the main power
supply rail to 5V for the first generation products.

The choice of a 5V rail had a distinct impact on the
choice of batteries. To achieve a low cost power supply we
needed a minimum of 4 cells. Our original choice of AA
batteries no longer fit within the physical product design.
We had to choose between enlarging the product, or again
reducing the battery runtime. The use of AAA size
NICAD batteries could still provide one of our primary
goals, which was to provide a typical user with at least one
week of use of the product, so AAA batteries were chosen
for the first product.

The power supply design was complicated because the
loads in the system vary from about 10mA when the
system is idle to about 400mA in the worst case.
Additionally, the load can change virtually instantaneously
from an idle state of 10mA to an active state of about
180mA . The task was to design a low cost converter that

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

was very efficient in both cases. We achieved about 85%
efficiency in the idle case (10mA) and over 90% in the
active case (180mA).

Regulation directly impacts the cost of a power system.
We had to trade regulation for power system cost. The
power supply rail can vary almost 5% when the system is
running, as the power supply struggles to cope with the
changing load. This 5% change during operation meant
that it was not possible to specify our power supply rail
over a production run at 5%. We settled on 10%, and had
to negotiate with the suppliers of all the major silicon
components in our system to have them specify and test all
their components at a –10% rail instead of the more
typical –5%.

Power Savings and the User Interface

The liquid crystal display (LCD), the digitizing tablet,
and the sound output hardware all comprise what Apple
terms the user interface hardware. These elements are
carefully chosen and implemented for low power and ease
of use. The user interface is where the careful intertwining
of hardware and software in this product is most visible.

When the digitizing tablet is in use, the OS constantly
scans for tablet coordinates at a rate of about 80 points per
second. Using a proprietary method, the validity of a
particular point is dynamically determined. This automatic
validity assessment prevents bad coordinate data, caused
by more than one contact on the screen surface while
writing, from being sent to the higher levels of the system
for processing. The area which is being digitized is also
continuously monitored. If the pen strays into an area of
the screen which does not require precise coordinate
monitoring, the sample rate of the tablet is slowed down to
about 10 points per second. These screen areas are
dynamic and are automatically defined by the Newton
view architecture. This allows application developers to
automatically take advantage of this power saving method
without even knowing that it exists. The power savings
from using these techniques are significant. The tablet
circuitry consumes an average of about 17mA and 10% of
the ARM CPU while active at full rate. Even when the
digitizer is running at full rate, careful attention to power
consumption is important; this is discussed further in the
section on interrupts.

Even the LCD itself is a key power saving element in
the MessagePad. In a typical LCD system, there is an LCD
controller which uses its own RAM, or accesses main
system memory. The LCD controller than drives a high
frequency clock and data stream to the row and column
drivers on the LCD panel. This leads to an LCD system
that can consume over 100mW of power just to display a
static image to the user. In the MessagePad, the LCD

frame-buffers are integrated into the LCD row and column
drivers. The drive edges are also carefully controlled,
preventing losses from driver cross-conduction. The end
result is an LCD panel which consumes less than 5mW to
display a static image.

The sound system also benefits from a combined
hardware and software effort designed to save power and
cost. The linear amplifier that is used to integrate and
playback the eight bit digital audio stream consumes about
17mA when active. In order to avoid a large waste of
power, the audio amplifier must be shut down when not in
use. To do this without pops and clicks, a ramp must be
generated, both in the analog hardware and in the digital
audio stream.

The World of Communications

Communications is a key element of the Newton
platform. The system implements most communication
functions through a very flexible serial port, as well as a
full type II PCMCIA rev 2.01 compatible slot. Drivers can
be dynamically loaded from the serial port or the PCMCIA
interface. This enables many new functions for Newton
users without them having to worry about installing or
configuring software. Current examples of this are the
Newton MessagingCard, and the Newton PrintPack. The
Newton MessagingCard is a wireless data receiver which
transparently loads a driver and user interface software
into the MessagePad whenever it is installed. The Newton
PrintPack is a serial cable that transparently loads drivers
for several hundred Centronics compatible parallel
printers. As elsewhere, all our communication protocols
are implemented with power in mind.

The LocalTalk protocol stack designed for Newton is
extremely low power. The user interface again plays an
important role in saving power. This is seen in the method
used for communicating with Macintoshes. One might
think that the logical approach is to do what most
LocalTalk devices do, and register the Newton
MessagePad on the AppleTalk network, and then be able
to choose it from any Macintosh or PC on the network for
remote access. We chose to reverse this process to avoid
having the serial engine and the ARM from constantly
having to respond to name lookups and other incoming
network traffic. In our user interface, the Macintosh
registers itself on the network, and then the Newton user
chooses the Macintosh from the list of Macs presented.

When the network chooser is displayed to the user, for
selecting printers or other network devices, it sends name
lookup requests rapidly at first. Over time, the software
sends fewer and fewer requests. Eventually, the serial port
is closed and all network traffic ceases. This prevents the
user from inadvertently consuming their battery power

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

when there is no real work to be done on the network.
When the user finally does choose a network device, the
serial engine is restarted, a new node id is obtained, and
the address of the chosen device is confirmed, all
transparently to the user.

Interrupts, Timers and Power Consumption

Internally, our interrupt and timer engines are a critical
part of our power saving strategy. The system is entirely
event driven. There is no concept of a spin loop within the
OS. Whenever the processor must wait for a slow
peripheral, and there is not enough time to make a context
switch, or there are no other tasks waiting to execute, the
OS stops the ARM processor in its tracks. An example of
this is the previously discussed tablet driver. There are
periods where the ARM processor is waiting for the
completion of an analog to digital [ADC] conversion. The
converter period is approximately 17µs. This is not
enough time to complete a context switch and get any
useful work done. So to conserve the maximum amount of
power, the ARM processor is stopped until the ADC
conversion is completed. The ADC completion signal is
the event that restarts the clocks to the ARM processor. It
then resumes execution and obtains the data from the
conversion.

The ASIC Design

As the design of the system progressed, we approached
the point where we realized that the custom logic chip (the
ASIC) that controlled everything outside the ARM CPU
was quickly becoming larger and more expensive than the
processor. Our internal challenge was to prevent the ASIC
from also consuming more power than the CPU. To this
end we made several design decisions that greatly
increased the complexity of the system.

The ASIC uses ripple counters for all event timers.
These use less power than the more common synchronous
counters. All internal and external bi-directional busses are
driven during all operational states. The only bus which is
tristated is the PCMCIA bus, and it uses nor gates in the
input pads to prevent leakage from floating signals.

All internal subsystems within the ASIC use gated
clocks. Each function within the ASIC is only clocked at
the rate necessary, and is only clocked when the software
activates it. This caused an unanticipated problem with the
design methodology that was being used. The ASIC was
entirely synthesized using Synopsys from Verilog source.
Many parts of the ASIC had to be manually instantiated to
prevent Synopsys from doing things like adding chains of
150 inverters in an attempt to balance timing where
balancing was not required

Unfortunately, gating the clocks to infrequently used
sections of the ASIC didn't provide an acceptable level of
power savings. The power consumption was still almost
twice that of the ARM 610 processor. Other measures
were also needed to ensure that the battery life would be
adequate, so another design improvement was made.
Whenever the ASIC idles the system under software
control, the internal ASIC clock to all blocks is reduced to
1.5Mhz. This clock is then used to run all the state
machines that are waiting for an event to occur.

Since we were constrained by the available ASIC tools
and processes for the first generation some tradeoffs were
made. We look at them as opportunities for great future
enhancement of the platform.

Robust Data Storage

System robustness is also of critical importance in a
machine where critical personal data is stored. It is, of
course, possible for a user to remove the batteries from the
system at any time. The system must be able to recover
from this event without losing any of the personal data.
To support this, a database that can have its operations

interrupted at any point without damage must be created.
The MessagePad has a complete transactional, object-
oriented database system built into it. This system makes
it impossible to lose any data that has been committed to
the permanent object store, unless the memory backup
battery is removed as well.

The Future

Despite the lead that Apple has in this class of products,
there are design and process techniques that will allow us
to improve the power/performance ratio of our system by
more than eight times. The most obvious improvement is
moving the main power supply to 3V. This alone will give
us more than a factor of two savings in power at the same
perceived performance.
In order to sustain these advantages in the long term, the

system has been designed to be extremely flexible and
portable. The applications development environment
generates byte code interpreted NewtonScript™. This
processor independent environment allows Newton
licensees and Apple to choose the most appropriate
processor platform at any point in time and with a minimal
effort get the entire Newton OS and all applications
running.
As we look to the future, we see many exciting new

products providing two-way wireless communication,
wireless faxing and, of course, improved free form
recognition. We feel that we have built a platform that
will allow us to be at the forefront in this class of products
for a long long time.

