
To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

The Newton Operating System

Robert Welland†, Greg Seitz†, Lieh-Wuu Wang,
Landon Dyer, Tim Harrington, and Daniel Culbert

Apple Computer Inc.
†Wayfarer Communications Inc.

Abstract

The Newton MessagePad Personal Digital Assistant
(PDA) is the first in a class of devices distinguished by
their pen-based user interface, communications capability,
small size, and low cost. A PDA operating system needs
to support the simultaneous demands of user interface,
applications, and communications. It must operate in an
environment that has little main memory, no secondary
storage, and a small power source. We describe an
operating system designed to address these needs. It
includes a micro-kernel, a memory management
subsystem, and support for removable storage and I/O
devices.

1: Introduction

The Newton™ MessagePad™ is the first in a line of
Personal Digital Assistants (PDAs). These pen-based
devices are small, lightweight, and battery powered. The
hardware is constrained by these requirements. Table 1
summarizes PDA hardware characteristics.

Table 1. Hardware Characteristics

Characteristic Why
Small screen and tablet Cost, power, size, weight
Small, slow main
memory

Cost, power

Diskless Power, cost, size, weight
Modest power source Weight
Powerful CPU/cache Performance demands: pen

input, handwriting
recognition, and dynamic
programming language

 Newton, MessagePad, and AppleTalk are trademarks of Apple

Computer, Inc.

PDA software must operate in this environment while
still providing a responsive user experience and
uninterrupted communications.

The Newton MessagePad has the characteristics detailed
in table 2. Severe RAM constraints and the absence of a
permanent secondary storage device present significant
design challenges. The RAM should be allocated on an as-
needed basis. Software should adjust dynamically to usage
patterns.

Table 2. MessagePad Characteristics

Characteristic What
RAM/ROM 640 KBytes, 4 MBytes
Power supply 4 AAA cells
Processor 20 MHz ARM 610
Mass storage Optional PCMCIA

memory card

Persistent user data is stored directly in RAM. This
data must be carefully guarded against corruption. It is
important that user data survive even if the system
reboots. It should be possible to store persistent data in a
compressed form and decompress it on demand. Caching
oft-used data is an important optimization in the presence
of expensive compression algorithms (CPU time = power
consumption).

A small power source requires careful management. If
the processor were allowed to run continuously, the
battery life would be measured in minutes rather than days
or weeks. In low power systems, the instructions-per-
second (IPS) rating of a processor are not as interesting as
the processor’s IPS-per-watt rating. IPS is interesting for
computationally intensive operations like handwriting
recognition, but averaged over time the IPS rating of a
low power system would be quite low. Software must
take full advantage of the power management features of
the hardware.

PCMCIA cards allow the system to be enhanced with
additional memory or peripherals. These devices are
different from more traditional expansion devices because

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

they can be removed at a moment’s notice. Software must
be able to use these devices while still functioning when
they are removed unexpectedly. It is important that these
cards be easy to use. Peripheral devices should provide
their drivers on-card rather than on removable media (such
as floppies). Software must define how drivers are loaded
from external devices.

The Newton operating system addresses these issues.
Figure 1 shows the basic structure of the operating
system.

Figure 1. Structural overview

Micro-kernel

Memory Architecture

Heap and Stack
 Management

Read-only Device
Management

Object-based Storage

Packages

The micro-kernel provides a multi-tasking framework
for higher level services. Multi-tasking makes it possible
to modularize concurrent subsystems. It is described in
section 2.

The memory architecture is described in section 3. It
provides the framework for managing the address space and
memory resources. This subsystem provides the basis for
managing the scarce RAM resources.

Section 4 details some of the features of the memory
architecture implementation.

Section 5 explores some of the specific memory saving
measures implemented with the memory architecture.

Section 6 is a brief summary of our persistent storage
model.

Finally we describe the means for loading code and data
from external sources. The concept of packages provides
this ability and is described in section 7.

2: The micro-kernel

The micro-kernel provides the core concurrency
functionality. Figure 2 shows the basic elements of the
micro-kernel.

2.1: Object management

All kernel components exist as objects in the micro-
kernel. Kernel objects are managed uniformly by an object

manager. Every object is owned by some task. When a
task dies, the objects it owns are scavenged by the object
manager or can be bequeathed to another task. Kernel
objects are represented to clients as object identifiers that
are correlated to an object residing in the kernel. The
client normally wraps the object identifier with an
interface class. Calls on that class pass the object
identifier along with arguments to the kernel. Kernel
objects are kept separate from their clients for safety.
Errant behavior by a client cannot make a kernel object
inconsistent (though the object may be rendered useless).

Figure 2. Micro-kernel overview

Object Manager

Tasks Ports and Messages

Timing Services

Monitors Semaphores

Task Scheduler

2.2: Tasks

Tasks provide the basic unit of concurrency. Tasks are
lightweight in that they can be context switched quickly.
We will see later that tasks are also lightweight in the
amount of memory they consume. Tasks contain little
more than the processor state needed to save and restore
the thread of execution and some additional fields used to
manage the blocking state of the task. At task creation
time, the creator can provide an initial state for the task.
This state is copied onto the task’s stack. The location of
the object can be accessed by a kernel call. This is used to
implement per-task globals. It can also be used to
implement an object-oriented model of concurrency.

2.3: Task scheduling

Tasks are scheduled preemptively. We use a strict
priority-based scheduler. Because of the highly cooperative
nature of task utilization in Newton, strict priority
scheduling has been sufficient. Tasks are switched
approximately fifty times a second. This number was
derived by experiment.

2.4: Ports and messages

Tasks can communicate by sending messages.
Messages are sent to and received from ports. Ports are

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

used as the synchronizing mechanism. That is, a task will
block on a port if it tries to receive from a port that has
no messages pending. Similarly, a sending task will block
if there is no receiver waiting. It is possible to send
messages asynchronously. This keeps the task from
blocking.

The message specifies an address region. To send a
message is to give the receiver the right to read the
contents of that region. To receive a message is to specify
the address region where a message should be placed.
Message copying is done by the kernel. We will see later
that the memory architecture controls the readability and
writeability of address regions. It is therefore important to
make sure that the kernel is mindful of these controls
during message copying.

Timing services are provided as a part of the port and
messaging model. Send and receive calls can specify a
limit on the amount of time (timeout) they will block. It
is also possible to specify that a message is to be
delivered at some point in the future. Time is specified as
a 64 bit number that describes absolute time. Delayed
messages are particularly useful when writing event-based
code.

2.5: Semaphores

Semaphores are provided for high speed task
synchronization. A variety of semaphores are provided.
The simplest semaphore model uses a shared memory
location and only enters the kernel when there is
contention. This approach is very fast but can be corrupted
by errant memory writes. It also requires that all
semaphore clients have write access to the shared
semaphore state.

At the other extreme, it is possible to specify a
compound semaphore. These semaphores consist of a
sequence of semaphore operations that are executed
atomically in the kernel. Compound semaphores can be
used to create complex locking sequences that are free of
"deadlock windows" because they are executed atomically.

2.6: Monitors

A monitor has many of the characteristics of a task
except that it executes on demand. A monitor exports an
interface that can be called by many clients at once.
However, only one request is allowed to execute at a time.
Clients wait in line for their turn. It is helpful to think of
a monitor as a heavyweight concurrent object: clients see
a monitor as an object in the same sense as any other
kernel object. Monitors have initial state just like tasks.
This can be used to initialize the state of an object
associated with the monitor.

Monitors are used to implement kernel extensions. For
example, the memory architecture uses monitors to
implement managers that are called when a task faults.
Many tasks can fault, but only one fault is processed at a
time. Note that these kernel extensions are not a part of
the kernel. It is in this way that new services and drivers
can be added to the kernel without recompilation.

3: The memory architecture

The memory architecture provides the framework for
managing address and memory resources. The Newton
operating system supports a single address space model. In
this model, all tasks reside in a single address space. This
approach has a number of advantages. Addresses can be
used to uniquely identify objects across all tasks. This
facilitates cooperative multi-tasking by allowing tasks to
exchange addresses (instead of state) where appropriate. As
we will see, it also dramatically reduces the per-task
overhead for page table management. In our system, all
tasks share a single (multi-level) page table.

The single address space model also eliminates the
task/thread duality found in all multiple address space
kernels that support lightweight concurrency [1]. In a
multiple address space kernel, tasks are normally
heavyweight because they must context switch the page
tables (and sometimes flush caches). Lightweight threads
provide low cost concurrency. Tasks and threads are one
and the same in our model.

Most existing single address space models do not
provide access protections. This leads to less reliable
systems because one task can corrupt the state of another
task. Most kernel implementations have provided task
protection by supporting multiple address spaces. This is
because traditional memory management units have been
designed with this approach in mind. As part of our kernel
development effort, we have developed a memory
management unit optimized to support our single address
space model [2].

Figure 3. The memory architecture

Tasks
Environments

Domains
Addresses

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

The address space is managed by address-oriented
services [3]. These services manage regions of the address
space by manipulating memory and permission mappings.
For example, a virtual memory subsystem can be viewed
as an address-oriented service that manages a backing store
and working set by responding to client faults. The
memory architecture provides a framework for
implementing address-oriented services. These services sit
on top of the memory architecture and manage stacks,
heaps, and read-only data. These services are often invoked
when a client task faults. For example, stacks are
automatically grown when a task references a stack
location (address) that has no storage associated with it.
The resulting fault will invoke the stack manager which
will in turn map storage at that location and resume the
task. We call such services fault-driven because they are
invoked by faults. The rest of this section will detail the
single address space model. Figure 3 shows the basic
elements of our model.

3.1: Domains

The single address space is broken up into a set of
regions called domains. Domains are normally contiguous
address ranges. Domains may not overlap each other.

A domain is normally used to implement an address-
oriented service. Each domain would normally be
associated with a specific service. There may be a number
of domains providing the same service. For example, there
are separate domains for the kernel and client heaps.

Figure 3 shows three domains and their associated
address ranges.

3.2: Tasks and environments

An environment consists of a set of domains. In figure
3 there are three environments. The first and third contain
single domains. The second contains all three domains
shown.

Associated with each task is an environment. This
environment describes the set of domains that the task has
access to. If the task attempts to access a domain outside
its environment, the kernel will generate a domain access
exception, which the task can catch.

Access rights do not equate to the ability to read and
write. It simply means that the task can try to access that
region. The behavior of reads and writes are controlled by
an address-oriented service associated with the domain.
These services manifest themselves as domain managers.
The structure of domain managers will be detailed in the
next section.

3.3: Memory management unit support

Our memory management unit (MMU) supports
domains and environments directly. Associated with each
primary page table entry (each primary entry corresponds
to a 1 MByte region of the address space) is a domain
number. This number is used to specify which domain
owns this range of addresses. The current hardware
supports sixteen domains.

Environments are supported by the domain control
register (DCR). For each domain number there is an
access control field in the DCR. This field specifies if the
currently running task has access rights to the
corresponding domain.

For every memory access the domain number
associated with the access address is computed and
compared with the corresponding DCR field. If the field
allows access to the domain, then the memory operation
continues. Otherwise, a fault is generated.

4: Memory architecture implementation

Domain managers are used to implement address-
oriented services. A domain manager is associated with
one or more domains and is responsible for handling faults
that occur within that domain. A domain manager can
make calls on the kernel-level page management and page
table management subsystems. In this way storage can be
acquired or released and the page tables can be modified. It
is with these resources that a domain manager responds to
a client fault. The following sections detail the
interactions between these components. Figure 4 details
the basic components of the implementation.

Figure 4. Implementation model

Page Table Manager

Page Manager Fault Dispatch

Domain Manager

4.1: The fault dispatcher

The fault dispatcher receives memory management unit
faults and directs them to the appropriate domain manager.
A fault occurs when a task tries to access a domain in a
manner not presently supported by the mappings. The
fault dispatcher blocks the faulting task and queues it with

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

the appropriate domain manager. It is in this way that a
domain manager gets invoked.

4.2: The page table manager

The page table manager handles all mapping requests
from a domain manager. The page table manager creates
and maintains the multi-level page table used by the
memory management unit. Mapping operations are either
memory or permission mapping operations. A memory
mapping operation consists of a physical memory
resource (such as a page of RAM or ROM) and an address.
A permission mapping operation provides a permission
(such as read-only or read-write) and an address region.
Operations for removing mappings are also provided. By
convention, we designate a page table mapping as

 v→(p, perm) where v is a virtual address, p is a
physical address, and perm a permission. A permission
can specify read-only access (R), read-write access (RW),
and no-access (N).

4.3: The page manager

The page manager provides pages of physical memory
that can be used by a domain manager. The page manager
manages a pool of pages that can be used by any domain
manager. The page manager implements a protocol for
retrieving pages from domain managers. In this way,
pages can be recycled between domain managers.

The page table manager is also a client of the page
manager. It calls the page manager when it needs storage
for new page tables.

4.4: Domain managers

A domain manager provides the address-oriented service
associated with a domain. A domain manager can map
physical memory resources into a region of the domain
space. It can also manipulate the access permissions.
Often these operations are combined.

A domain manager is called whenever a task faults in
its domain. The domain manager is provided with the
details of the fault (the fault address, the kind of access
attempted, and the kind of fault). The domain manager
must determine how to respond to the fault. The simplest
response is to generate an exception. This would be
appropriate in the case that the task has done something
wrong (for example, accessing outside the bounds of a
heap). In the normal case, the domain manager would
attempt to perform some mapping operations (for
example, to grow the tasks stack) and restart the task.

In performing its duties, the domain manager will
interact with the page manager and page table manager to

acquire, and possibly return, physical memory resources
and to perform address and permission mappings.

Domain managers are implemented as two monitors
and a semaphore. One monitor fields requests from the
page manager. The other monitor fields requests from the
fault manager. These requests need to be handled by
separate monitors to avoid the deadlock case that would
result if handling a fault results in a page manager request
(monitors only handle a single request at a time). The
semaphore is used to serialize monitor access to a
common database of mappings. A client level wrapper
class is provided that encapsulates the common
functionality of a domain manager. Specific domain
managers subclass this wrapper and provide service
specific behavior and state.

5: Memory management

In this section we will describe two address-oriented
services. We also describe a technique, sub-page
management, that allows us to more carefully control
memory usage.

5.1: Stack and heap management

Task stacks start out with a minimal size and grow
automatically. It is the job of the stack manager to grow
(and shrink) stacks on demand. The stack manager also
allocates address ranges for stacks. By default, the stack
manager will allocate each new task a 32 KByte region of
address space in the stack domain. Tasks can request larger
stack regions if necessary. Initially, there is no storage
associated with a task’s stack region. As the task uses the
region, it faults and the stack manager allocates storage.
Guard bands separate stack regions so that attempts to
access outside of the region bounds can be detected. If a
task generates an access in the guard area an exception will
be generated. Because storage is allocated only as needed,
the amount allocated is proportional to need.

Unfortunately, most memory management units map
memory in rather large chunks (4 KBytes is common).
This can be wasteful if a task only needs a few hundred
bytes of stack. Using the sub-page management technique
described below, the stack manager can grow a task’s stack
in increments of 1 KByte. This results in a significant
savings.

Heap management is broken into two parts. A client
level part manages the allocation and deallocation of units
of memory. The client level part is also responsible for
heap compaction and handle management. The client level
part makes calls on a kernel level part to grow and shrink
the total amount of memory in use. Because heaps are
grown explicitly (i.e., an allocation call is made) the heap

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

manager is not fault driven. When more memory is
needed, the client level piece makes a call directly to the
kernel piece. This interface is exported by the kernel level
heap manager. The kernel level part also allocates and
manages address regions for heaps. A heap is normally
allocates as a large region (256 KBytes).

In actuality, the kernel level part of the heap manager
and the stack manager are one and the same. They differ
only in the way address regions are allocated and how
growth is managed.

5.2: Read-only data management

There is a significant amount of read-only data in the
Newton MessagePad. Executable code, dictionaries, and
read-only objects are a few examples. In addition to on-
board ROM, PCMCIA cards may be the source of read-
only data. Often this data can be compressed, resulting in
significant growth in the effective amount of storage
available. Finally, PCMCIA cards tend to have slow
access times, and there can be significant performance and
power gains from caching these storage devices.

The read-only storage manager provides a way of
managing read-only data in a manner that incorporates
caching and compression. It manages a pool of memory
that is used as a cache. Compressed data is decompressed
into the cache and made available to clients. The read-only
storage manager is similar to virtual memory with
support for decompression.

The read-only storage manager takes advantage of sub-
page management as described in section 5.3. This makes
it possible to manage the cache as a pool of 1 KByte
blocks instead of a pool of 4 KByte blocks. This results
in a significantly higher cache hit rate.

5.3: Sub-page management

A domain manager is limited by the memory
management unit. Mapping physical resources are
normally constrained by the page size defined by the
MMU. Access permission control normally has similar
constraints. Our memory management unit supports sub-
page permissions. This allows us to control access
permissions with a 1 KByte granularity instead of the 4
KByte granularity defined for address mapping. By
convention we will define a sub-page mapping as follows:

v→(p, perm=(perm0, perm1, perm2, perm3))

Where v is the virtual address, p is the physical address,
and the four element set perm specifies the sub-page
permissions.

Figure 5. Sub-page management

Address Space

Physical Page

Sub-page

Sub-page permissions can be used to implement a form
of sub-page storage management. This allows us to
allocate memory in sub-page units rather than in page
sized units, leading to substantial memory savings. In our
system, pages are four times the size of sub-pages. In
some situations (like stack management), we see a better
then four times improvement in memory utilization. Sub-
page storage management is achieved by mapping a single
page of storage into multiple virtual addresses and using
the sub-page permissions to assure a one-to-one sub-page
mapping. By one-to-one we mean that for each physical
address, there is at most one virtual address mapping to it
(the inverse relationship is assured by the single address
space model). Figure 5 shows the effect we would like to
achieve: each physical sub-page is associated with a single
virtual address. Table 3 shows how permissions are
manipulated to assure the one-to-one relationship required
for proper sub-page storage management. The table shows
four mappings to the same physical page and their
associated permissions. Note that for each sub-page, there
is only one mapping with a non no-access (N)
permission. This mapping is the owner of the associated
sub-page.

Table 3. Permission management
virtual permissions
V0 (N, N, N, R)
V1 (N, RW, N, N)
V2 (N, N, R, N)
V3 (RW, N, N, N)

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

The tricky part of this approach arises when it becomes
necessary to add additional sub-pages to a mapping. For
example, when a stack grows it would be economical if it
could be grown in sub-page increments. What do you do
when the stack grows and the next sub-page in the
underlying mapping is already taken by another mapping?
In this case the sub-page manager needs to shuffle data
between pages so that there is a physical page available
with free sub-pages available where needed. The sub-page
manager handles this task by maintaining an occupancy
table for all pages. It computes a strategy that involves
the least amount of data movement and then executes that
strategy.

The sub-page management approach requires that sub-
pages be used with equal probability. Otherwise, storage
will not be maximally utilized. For example, the stack
manager uses sub-page management to grow stacks in
sub-page increments. Imagine that all stacks are a sub-
page in size. If this were true, then sub-page management
would only work when stacks were equally distributed on
sub-page boundaries. If the stack manager were to place all
stacks on a page boundary, then they would all need the
zeroth sub-pages; the other sub-pages would never be used
(we are assuming sub-page sized stacks). To avoid this
problem, the stack manager distributes stacks over the
different sub-page boundaries. This is easily done at stack
creation time by adding a progressive decrement (in sub-
page units) to a task’s top of stack.

6: Object storage

The Newton MessagePad does not contain a permanent
secondary storage device. In the base configuration, user
data is stored directly in main memory (which is backed
up by a lithium battery). Users can purchase a number of
PCMCIA storage cards. These cards are either FLASH or
battery backed-up SRAM cards. We have developed a
storage model that supports these devices.

The storage model is based on objects rather than files.
The storage model was designed to support medium sized
objects (on the order of a dozen to a few hundred bytes).
Objects can reference each other. Most importantly, the
object store supports semi-transparent persistence. This
means that objects can be moved in and out of permanent
storage without any application code. This greatly
simplifies the developers task.

Finally, the storage model is transactional. A
transactional store supports committing a set of
operations on the store. If an unrecoverable failure occurs
during a transaction, the transaction can be aborted. This
formalism assures that the store will remain consistent
across a wide range of failures.

7: Loading code and data

Traditional computers deliver software on removable
media such as floppy disks (and increasingly, CD-ROM).
Because the Newton MessagePad lacks a removable
storage device, it must support multiple distribution
mediums.

This is done by defining a standard distribution format
that is supported by different media types. Both stream-
based and memory-based media types are supported. This
allows us to distribute software on a variety of media.

Using the stream-based packages, it is possible to
distribute software over the phone lines, over a computer
network (such as AppleTalk™), or over a serial cable.

Using memory-based packages, it is possible to
distribute software on PCMCIA ROM, RAM, FLASH,
and I/O cards. In the future, disk and CD-ROM devices can
also be supported.

7.1: The package model

A package consists of an index and a number of parts.
The index contains an entry per part. Each entry contains
information about each of the parts: a type, a type specific
information field, version information, and the parts
location in the package.

The part type specifies what kind of data the part
represents. For example, a part could be executable code or
a font.

The type specific information field specifies
information about the part in a type specific format. For
example, the information about a font might be an ASCII
string with the font name and size. After the index comes
the parts themselves.

Packages can be loaded and unloaded. When a package
is loaded, the package manager is called passing it the
media source. This can be either a stream-based source or a
memory-based source. In either case, the package manager
reads the index and processes each part entry. Assuming a
part is suitable for loading (i.e., it has a reasonable
version number etc.), it get dispatched to a part handler.
Parts are dispatched to handlers by type. For example, a
font would be dispatched to a font manager. The part
handler is given the media source and told some data about
the part (such as it's size, information field, etc.). It is the
part handler’s responsibility to process the part.

Unloading is the opposite process. The package
manager informs the part handlers that a particular part
needs to be unloaded. It is the part handler’s responsibility
to remove it from the system.

To appear in Proceedings of the 1994 IEEE Computer Conference, San Francisco.Copyright © 1994 IEEE

7.2: The smart serial cable

The smart serial cable protocol demonstrates a creative
use of packages. We have developed a smart serial port
protocol that "chirps" in an identifiable way when plugged
into a Newton. The serial subsystem recognizes this
chirping and begins a handshaking protocol with whatever
device is connected. The protocol specifies that as part of
the protocol, the device download a package. This package
should contain a driver for the device and whatever other
resources are necessary (such as fonts and applications).
The driver is then initialized and the device comes
available to the user. Our smart printer cable operates in
this manner. The package is stored in ROM on a single-
chip microprocessor that provides the functionality of the
device.

7.3: Downloading system updates

Downloading system updates is another example of the
use of packages. Updates come in the form of a set of
system patches. These patches are a type of part. Online
upgrades are implemented by downloading a package and
installing the patch part into the system. In this manner,
users can receive the most up to date system without
having to go to a dealer. In this same manner it is
possible to distribute other software.

8: Bibliography

[1] Richard F. Rashid. Threads of a new system. Unix
Review, vol. 4(8), August 1986, pp. 37-49.

[2] ARM610 data sheet. Advanced RISC Machines Ltd.,
Cambridge, England, 1992.

[3] W. Smith and R. Welland. A Model for Address-
Oriented Software and Hardware. In Proceedings of the
25th Hawaii International Conference on System
Sciences, January 1991.

