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Abstract nisms with its“extemal paer” interface[16], but (as the

. . name implies) clients of that interface must bectrred
We introduce the concept dhddress-oriented soft- like demand-paged virtual memory services.

ware’, which is software that assigns particular meaning We are deeloping a new opeting system that is con-
to the values of memory addresses. Such software is Ofteﬂucive to the implementation of new digss-oriented
not well supported by the services of the operating SyStemalgorithms. Specifially
in which it operates. We provide some examples of ’

address-oriented algorithms, and propose a general modelWide rmnge of adiress-oiented algrithms. We intend to

tht.hﬁ ope_ra}ttlor;stthey use,thcaltl)ed_ adfdress manag?_ment 'use this model of alless mangement as the basis of our
which we Intend to use as the basis ot a new operating SysE)perating system. The model is described in Section 2.

we hae deived a simple set of
concepts we calladdress managemetttat can describe a

tem. We derive a hdware model from our formal model,
and suggest implementation techniquégartial imple-
mentation of our halware model is an integral part of the
ARM 600 processor, currently in development.

1. Introduction

Progiams that manipulate pointers usually do so with-
out using knwledge of their actual valueJhis tendeng
is reflected in“safe” languges such as Pascal and Lisp
tha admit the concept of an opaque pointer to tada
object, but piovide no opestions to get the memypr
addess from a pointer. Heever,there is a class of alg
rithms, which we calladdress-orientedhat do ely on the
values of memory atfesses. For@ample,a generational
garba@ collector may determine thgeaof an object ¥
examining its adress,an object-oriented langga imple-
mentdion may define an object’s identity by itsdaelss,
and a persistent pgramming system may gvide a tans-
lation between dftrent adiress spaces and objeepre-
sentéions while peseving adiress-based object identity
in both.

Most opeating systems and pcesscs in curent use
hawe a system model that is designed to suppatt-w
known adlress-oiented services like virtual memory and
memory-mpped files. Because of this limited model, it is
sometimes dffcult to implement a new ddess-oriented
algoithm on one of these systems. Foample, Mach
[10] provides some ho-level adiress-oented meba-

The deelopment of our model has been guided by the
desie to support seeral useful algrithms,some of vhich
hawe been hard to implement on existing @iag sys-
tems.We present a brief sugy of some of these abg
rithms in section 3, along with an inpeetaion of each in
terms of adiress mangementWith this section as mot-
tion, we proceed in section 4 torfnaliz our model of
address management.

We have designed new memory mgement hagtware
to provide eficient support for our softave éstractions.
Conwentional memaor-managment hadware is optimizd
to support virtual memgr which makes dicient imple-
mentdion of more gnerl opestions dificult. The model
descibed here can beanslded quite diectly into had-
ware In section 5, we extend therinal model slighy
and use it to develop a hardware architecture.

Pat of the hadware design of section 5 has been
implemented for the ARM 6Q0 processorcurently in
dewelopment. Section 6 iafly describes that implementa-
tion.

2. Address management

In our model, a computer system contains many coop-
erding tasks. Some tasks quide adiress-oented ser
vices such asabag collected hgzs, persistent object
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stores,virtual memoy, or memoy-mapped files to other

2.4 Mappings

tasks.These services are presented to their clients as spe-

cial regions of memory that behave in particular ways.

2.1 Tasks and the single address space

During instruction ®ecution, various tansldions ae
perfomed on adressesThese tansldions are definedyb
mappings The most important mappings are thetuai-
to-physical adiress mapping and the dréss-to-permis-

Tasksare independent threads of control that share ansjons mapping.

addess spaceThere is one adress space for the erir
system.This simplifies the model, andgwides impotant
benefits in the operating system.

Separte adiress spaces are useful for isolation a-pr
grams from one anothdput that isolation makes it tder
for programs to coopate For exkample,implementéion
of shared code lilaries is more diffcult with multiple

2.5 Faults

A fault is an eent gnerded by the recution of an
instruction. The ecution process will halt an instition
andsignala fault if the ppropridae conditions are metoF
example,a fault is signalled when a memory access is

spaces than without. Unwanted memory access carebe pr atempted that is disaleed by the adress-to-permissions

vented with permissions; garde spaces are not necegsar
for protection.

The size of the single debss space might be a conter
but persistent mrgramming languges alleiate adiress
space limitations. A persistent object store with alresk
space lager than the mcessos adlress spaceequires
some mechanism foranslding machine adresses to per
sistent adressesThis efectively rendes the size of the
processos adiress space rielevant,as long as it is lge
enough to accomodate @asonale working set, because
work is really taking place in the lger persistent attess
space Support for persistent langues is an impdant
goal of ours.

The most important adntag of the single adtess

space model is the possibility of system-wide object iden-

tity defined by the virtual alfesses of objects. Since no
two objects can occupy the samel@ss object adresses
can be used as unique idewttfi or cpabilities throughout
the system.

2.2 Domains

The system attess space is partitioned indomains
A domain is a possip non-contiguous set of drksses.
Domains do notwerlap,so an adress can be in only one

mapping A signal is usually passed to the mgeraof
some domain determined by the type of fault and the oper
ands of the instruction. Depending on the gitum the
instruction may be restarted after the fault is handled.

2.6 Barriers

A barrier is a estiction of read access, or astriction
of the fbw of addresses or controldiv between domains.
Violation of the barier causes a fault to be signalled
which in turn causes some action to be takemere ae
three kinds of barriers:

A read barrierrestricts reading from a location.

A write bamier resticts writing pointers into a domain
when they point into another domain.

A control-flow barrier resticts plogram counter mee-
ment between domains.

Write bariers and conwl-flow bariers are called
cross-domain restrictions, because they areelations
between domains.

2.7 Address detection

A write barier only applies when the datum beingtwr
ten is an adress. In order to implement write biars, the
system must bebke to distinguish pointer data from non-

domain. Each domain has an associated task, called it%ointer dataThis is a commonequirement of adress-ori-
managey that povides the service associated with the onieqg systems such aarbag collectorsThe usual solu-

domain.

Domains are associated witbntrols which affect the
execution of memory access ogions. The set of con-
trols is open-ended. In this paper we will consideryonl
two contols: virtual-to-plysical adiress tansldion and
access permissions.

2.3 Environments

Ead task opeates in a context called amvironment
that defines its elationship to the domains in the system.
Environments may be shared among similar tasks.

tion is to use tag bits in each datum tfthe pointes.
This can be implemented in lolavare or softvare; the spe-
cific details are not important to our discussion.

3. Typical address-oriented services

This section describes somedeaess-oented serices
tha we are pdicularly interested in suppting. For eab
algorithm,we show how it can be implemented within our
model of address management.



3.1 Virtual memory

A virtual memory servicg7] allows a pogram to use
mass stage as verking memory by poviding the illusion
of a lage physical memgr The service ensures that its
clients will be dle to allocate and use memory without
botheing to mange physical memagr Physical memagr
is used as a cache for the backingestehich is kept on a
mass stage device. By manipulating memory petis-
sions,the aailalde physical memory is uisibly supplied
to the client where it is needed at the moment.

The service defines agon of adlress space that will
behae as the virtual memgr Within this space some
pages will be“valid”, meaning that they are mapped to
addesses in physical memory; others will Hievalid”,
meaning that they k@ no associated physical memyor
and are either unallocated avapped out to diskThis is
implemented by manipulation of the tal-to-physical
address mapping.

from-space is copied to the end of to-spadeere it will
eventualy be scannedand the pointer in the object being
scanned is updated tefer to the eferenced object’s e
locaion. A forwarding pointer is left in place of each cop-
ied object, so later references to the object can be updated.
This process has thefeft of copying all thegachable
objects into to-spa¢eand updating all the pointers in the
objects to efer to the locations of the copié¥hen all the
reachale objects hee been copiedany objects left
behind in from-space areaageand from-space can be
reclaimed. Processing resumes, and the algorithm repeats.

Concurrent collector: The concurent collector is like
the stop-and-copy collectdrut it does notequire the &-
ents to stop running while the collection occurs. It
enforces a equirement that the client is not alled to
read pointers to ém-spaceand thus cannot tell that the
collection is incomplete.

The estiction on dients’ reading adresses in fm-

The service is notified when a client attempts to accessgpace is a read bir, which is implemented by manipu-

an irvalid paje The service chooses a set ofjgs tha
will be swapped in (pesumaby including the one thelie
ent wants). It banges the adress-to-pemission maping

lating the adress-to-penission maping After the flp,
all memory that could contain deksses in from-space is
protected from client access by turning off thiertts’ read

for the set to “no access”, maps physical memory into thezccessand the copying processdies. When a pge in to-

pagesfills the memory with ppropride data (usuallyead
from the staage device), and releases the permissions so
the clients can access the new ddtaen physical mem-
ory becomes scae, the service needs to pick somedia
pages and wap them out, oncegain unmapping them and
preventing client access.

3.2 Garbage collectors

In a carbage-collected systemagbag is stoage that is
no longer accessible byegal” languaye opesations. A
garba@ collector finds grbag and makes its stge
availabe for use. Many grbag collectors do this byrfd-
ing all stoage objects that aneot garbage and eliminting
the rest. Non-grbag objects are found bgcursivey fol-
lowing all pointers contained in sage objects, startingta
a set of root objects, hich includes global ariadles and
the processor state of all task&¥e will consider thee
algoithms for garba@ collection: stop-and-cof¥4], con-
current [1], and generation scavenging [13].

Stop-and-copy collector: Memory is divided into tw
regions, called from-spaceand to-space During nomal
execution,objects reside in to-space; from-space is not
used When to-space is exhausted (or hean), pocess-
ing halts. The identities of the spaces argcleanged
(flipped: from-space becomes to-spaemd vice ersa.
The root objects are copied into to-spatke objects in
to-space are then scanned for pointers intenfspace.
When such a pointer iotind, the eferenced object in

space has been scannpal the pointers in the ga hae
been tanslded into to-space pointers; the client can access
it without seeing from-space dic:ssesso the potection

on that pge can be emoved If the client attempts to
access a protectedgma fault is signalled and the collec-
tor is notified; it immedigely scans and ansldes tha
page, unprotects it, and allows the client to proceed.

Generation-scavengig collector: Most objects
become grbag very soon after being alloted, and older
objects are less Ity to become grbage Geneation-
scaven@ng collectors exploit this imrmaion by concen-
trating their eforts on younger objects. Memory is dided
into multiple egdgons called generations which amwe
ordeed by g@e and can be ingendeny garbage-col-
lected 6cavenged Objects are eded in the pungest
generéion. When an object has sived seeral sca-
engesijt is moved to the next-oldereperdion. Older g@n-
erdions are soznged less fequenty than never
generations.

To scaenge ¢enerdions indgendently,the collector
must be ble to determine wich objects in a gneration
are referenced from otheranerationssince these objects
must not be collectedven if there are noeferences to
them within their own gnerdion. It is uncommon for an
object to eference objects gunger than itself so efer-
ences from olderanerdions to never generdions can be
recoded with low @erhead (old objects thaeference
newer objects are called themembezd se). Becauseef-



erences from gunger to never objects are notemem- is persistent pointers that clients are notvedid to see

bered,it is necessary when s@ngng a gnerdion to The collector tansldes an object byoflowing pointes
scaveng all younger generdions at the same time; this is from the object into &m-space,copying eferenced
not much additional effort. objects into to-space and updating the pointers. Aestor

The collector must detect digtsses being written to a transldes an object by allocating virtual drdsses for the
newer generdion than their ownThis is an adress-flow referenced objects and putting them into the objecteLik
barrier One domain is assigned to eaaneration,and the collector the store manipulates the permissionpma

appropride cross-domainestictions are ceated Writes ping of its domain to inteept reads and writes to uatrs-
of addresses to meer generdgions signal anss-domain lated pages.
faults to the collector, which records them for future use. The store is also similar to a virtual memory service in

There are altamative implementations ofemembered  that it dynamically assigns physical memory to the parts of
setg[17]. The collector can vite-protect older gnerations the store that are resident in megndt manipulates the
and ecod paes that were touded, then later scan the virtual-to-physical adiress mapping of its domain to

pages looking for eferences to nger generdions. This assign physical memory where it is needed.

obviouslyy adds eerhead to the collection, since rmaor Like the g@nerdion scaengng garbag collectoy the
objects than necessary must be scanhed it may be store must detect cross-domaindaeks opeations; in par
more eficient depending on thevailade hadware A ticular, it needs to know about pointers from gistent

software-ony implementation is also possible; inline code objects to transient objects, so it can make th@sesignt
can be gneraed bebre all writes that quidy marks a objects persistenthis is an adress-flov barier like the

data stucture with the location of the writes. Sinceitgs intergenertional one and it may be implemented in the
are uncommon, this may be efficient. same ways.
3.3 Persistent object store 3.4 Transaction control

A persistent object storf?] is a epositoy for daa In a transaction-based syst¢®), multiple tasks shar

objects that outlie the pograms that araed them.There the same data. Simultaneous access to the data is con-
are many widely arying definitions and implemerttans trolled by making the tasks pmipate in transactions
of persistent object stores. Because it usesrakfeatures which are sequences of opions that are combined into

of our model, we will concerdre on Paulilson’s pro- single atomic actionslasks acquire and relealeeks on
posed scheme ifil5], although similar techniquesear daa in the course of a transaction; bydking the manipu-
used by ObjectStore [3] and Cricket [12]. lation of the lo&s, the transaction system can ek do-
This kind of store is similar to virtual memory in tha micity by aborting conflicting transactions.
objects are mapped into memory from a diskweher, Systems such as iCket [12] provide paye-based ldks
because the store has its own objedressing skeme, without requiiing clients to gplicitly acquire andalease
addesses of objects in the store are not the same as menthem, through manipulation of permission mappings f
ory addresses. Fon@ample,they may be lgjer than mem- individual tasks. At the lginning of a tansactiona dient

ory addresses,or store adresses mayefer to whole task has no permissions on the transaction domainlitf a c
objects ather than byte offsets. Objects in the store con- ent attempts to read from agsthe transaction magar
tain pointers in thisdrmat, yet clients access objects as assigns that client a read lock on thajgajives the kent
though they were present in memory in the usualkrh, read access to thegm and allows the client to pceed.
with pointers in thedrma of memory adresses. Beire At this point, the client can read thegpafreely, but the
the client can access an object, its pointers mustbs-tr  sewice will still be signalled if the client tries to write to

lated. the pae,or if another client accesses th@@d he rest of
When the store is opengithe root objects of the sr  the locking system is similarly implemented.
are read into memory andatislded to memory drmat. Transaction services ¥ a equirement unique among

Virtual adiress space is allocated for the objeater the services described kedifferent clients of the seice
enced by the root objects, but no physical memory is need diferent permissions for the séce’s domain.The
magpped into it, so the service is signalledemeer dients set of locks held by a client determines thenpssions
attempt to read or write to this space. Upon nedifion, that client has. Each task runs in a unique environment.
the service reads th@propride object into memory and
transldes it, allocating space for the objeaerenced iy 4. A formal model of address management
the object as before, and the process repeats.

The store has a&quirement like that of the conaent
garba@ collectoy only instead of from-space @ssesit

In section 2, we irdrmally described our modeWe
now express it in more formal terms.



4.1 Definitions

V is the set of affesses gneraed during an adtess
operdion; this set is often called thtvirtual adiress
space”of the pocessarP is the set of adtesses used to
access physical memory.

E is the set of environments.

AT ={R,W, IF} is the set of access typegdd,write,
and instruction fetch).

Permis the set of access peissionswhich is the pov-
erset of AT (that is, {, {R}, {W}, {IF}, {R, W}, {R, IF},
{W, IF}, {R, W, IF}}.

D is the set of domains. A domain is a tup® AMap
PMap ...>, wher SOV is the set of adfesses in the
domain,AMap: S - P is a function mapping the domain
into physical memgr, andPMap: E - (S - Pernj is a
function poviding ervironment-specifi permissions dr
the domainAMap andPMap are controls of the domain;
there may be other controls that do not pertain to this dis-
cussion. Domains do notwerlap: no adlress apeas in
more than one domain'S (although some ablesses ma
not be in anyg).

DC:V - D is a function mapping adesses to their
domains (a “domainlassifier”). DC(V) is the domain §,
Amap Pmap ...> such thav [0 S Domains do not neces-
sarily cover the adress spageso DC may not be defed
for somev O V.

Data is the set of dateepresentions availabe in the
processor.

Ptr: Data - {true, false} is a function that igrue for
all representations of pointers.

Addr: Data - V is the function that determines the
address of a pointer represented by a datum.

CD: D x D - Permis the function that definesass-
domain access permissions.

4.2 Instruction execution

All operations in our model take place during theee
cution of an instruction. An instruction may beremad
write, or non-memorynstruction.“Executing” the instuc-
tion means determining the physicalgetradiresses and
generéing gopropride faults; we will ignore other aspects
of execution. Instructions arexecuted in the context of an
environmente.

The common datue of all instruction xecutions is a
procedue we will call Translatdv, t). Given a vitual
addessv [V and an access typel AT, it either deter
mines the physical address or signals a fault.

Translatdyv, t):

1. Letd = DC(Viarged be the domain§ Amap
Pmap ...>. If DC(Vigrged is undefined, signal a
domain translation fault

. Leteperm=Pmage). If Pmage) is undefined,
signal adomain access fault
. Letp =Amagv). If AmagyV) is undefined, signal
anaddress translation fault
Letperm=epernfv). If eperntv) is undefined,
signal apermission translation fault
5. If t O perm signal goermission violation fault
6. Usep as the physical target address.

We also define a pcedue CheckDomaingl, v2, t).
Given two virtual adressey1 andv2 and an access type
it performs the cross-domain permission test. It assumes
DC(v;) is known to be defined.

CheckDomainw1l, v2, t):

1. Letdl = DC(Vl)

2. Letd, = DC(v,). If DC(v,) is undefined, signal a
domain translation fault

3. Letperm=CD(d,, d,). If CD(d4, d,) is unde-
fined, signal &ross-domain translation fault

4. If t O perm signal across-domain permission
fault.

All instructions perbrm an instructiondtch opeation,
which has two taget adiressesv,eny the adiress of the
current instoction, and vy, the adress of the nd
instruction to be recuted vy, Will usually be the loca-
tion immedidely after voyreny €xcept in the case of
branches. An instruction fetch is executed in two steps:

1. Determine the physical address of the next
instruction usingranslatéVvy,qy, IF).
2. CheckDomain®/nexs Veurrent-

Non-memoy instructions pedrm only the instuction
fetch opestion. Other instructions process either one or
two taget adiresses in addition to perming their
instruction fetch.

A read instruction has a single dat adiress Vg ce
the adiress to beaad It determines the physical scer
address usingranslatéVvgq ce R)-

A write instruction has a tget adlressvyeg, Which is
the adiress to be written into, anddatumwhich is to be
written thee. If they are writing a pointerthey hae
another taget adiressAddr(datun). The two-addess po-
cedure is as follows:

1. Determine the physical destination usimgns-
late(Vgesy W)-
2. If Ptr(datun) istrue, CheckDomain®yegy
Addr(datun)).

4,

5. Hardware support

The adiress-managment model can be implemented in
hardware In fact, implementations of a subset of it
(namey the vitual-to-plysical and adress-to-permis-
sions mappings) are common in standard memory man-
agement hadware In this section, we explain how our
broader model can be implemented.



Figure 1. Abstract hardware
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5.1 Extended formal model

For better gplication of the hadware implementgon,
we introduce adwv new items into our model of dress
management.

DN is the set oflomain numbersA domain number is
a small integer that represents a domain.

DnumD - DN is a function mapping domains to
domain mmbes. The opeating system chooseppropri-
ate assignments of domaimmbes among the domains in
use at any given time.

DCR:DN - {true, false} is a function that indictes
the domain ombes whose domain®®mays are defied
for the curent ewironment. Lete be the cwent ewiron-
ment andd be the domain § Amap Pmap ...> sudh
tha Dnum(d) =dn. Then DCR(dn) =true if Pmage) is
defined.

Faults={ domain translationdomain accessaddress
translation permission translationpermission violation
domain translationcross domain permissidiis the set of
faults.

A fault statusis a tuple ®N;, DN,, A, F>, where DN
andDN, are domain umbers,A 0 AT is an access type
andF O Faultsis a fault.

5.2 Hardware architecture

See fgure 1 for a bock diagram of the hstract had-
ware achitecture which is basically a da-flow represen-
tation of the model in sectioh. This design is not suitde
for direct hagware implementton, but it can be ans-
formed into one that is.

Figure 2 shows the buildingldcks of the achitecture.

Each block represents some portion of the formal model.

DC (domain classifier) accepts an address ivpand
produces two outputs: a fallt and a domain number
DN. If DC(V) is defned,F is set tdfalseandDN is set to
Dnum(DC(V)). OtherwiseF is set tarue andDN is
undefined.

TDC (tagged domain kassifier) accepts datumas input
and produces three outputs: a falan enabl&N, and
a domain numbddN. It combines a domain classifier
and thePtr andAddr functions.

If Ptr(datum) istrue, ENis set tarue, and the domain
classifier is used to findnumDC(Addr(datum))). F
andDN are the outputs of the domain classifier.

If Ptr(datumn) isfalsg ENis set tdfalse F is set tdfalse
andDN is undefined.

AMAP (address mapping) accepts an address Mput
and produces two outputs: a fakltand a physical
addres$. It is the composite of all domaimsmays. If
AmagV) is defined by some domainjs set tdalseand
P is set tcAmagV). OtherwiseF is set tarue andP is
undefined.

Figure 2. Building blocks
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Figure 3. Mapping and domain classifier
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PMAP (permission mapping) accepts anl@ss input/
and produces two outputs: a falltand a set of permis-
sionsPerm PMAP is similar to AMAP; it is the compos-
ite of all domainsPmae), where e is the current
environment.

DCL (domain control logic) accepts a domain number
DN and produces a fault outplitwhich istrue or false
depending on the contents of the domain conegbter
inputS. The register contains a bit for each possible
domain number- is determined by the bit correspond-
ing toDN.

MEMBER is an implementation of the relatiéh

F =ATU Perm

CDL (cross-domain logic) accepts two domain number
inputsDN; andDN,, and an enable inp&N, and pro-
duces two outputs: a falt and a set of permissions
Perm If ENis false[F is set tdfalseandPermis set to
AT (all permissions). IENis true, then iCD(DN;,

DN,) is definedF is set tdfalseandPermis set to
CD(DNj, DNy). OtherwiseF is set tarue andPermis
undefined.

FDU (fault dispatch unit) accepts one input for each
member ofFaults, as well as two domain numbéddsi;
andDN, and an access typgd. It has two outputs, a
combined faulF and a fault statuS. If any of the fault
inputs ardrue, F is set tdrue andSis set to a represen-
tation of the fault statusBN;, DN,, AT, fault>, where
fault is the highest-priority fault type whose correspond-
ing input istrue. If none of the fault inputs ateue, F is
set tofalseandSis undefined.

5.3 Implementation details

In order to produce a real liavare design, thelsstract
components in the prious section must beamsformed
into appropriate hardware structures.

The TDC, DC, PMAR and AMAP modules can be
implemented as a pair of contendagssale memores
(CAMs) and shared table-walking logic (see Figure 3).

The CDT (cross-domain tae) is a dual-ported CAM
tha accepts two altesses and dekrs two domain am-
bers. The size of the CAM depends on theamgulaity of
domain sizes.

The TLB (transldion lookaside bffer) is a single-
ported CAM that accepts a virtual dess and delers a
physical adiress and a set of permissiofifis is a stan-
dard component of most mememanagment unitsThe
size of the CAM depends on thegeasize of the ansla-
tion structure.

The table-walking unit is actvated when either the
CDT or TLB misses. It aveses a tw-level data stucture
in memory to locate the neededdnhaion. The locdion
of this stucture is defined by th&anslation table base
register. For a CDT miss, only therét level is used
because the domain orimaion only resides in fst-level
entries. Both levels are always traversed for a TLB miss.

The tdle-walking unit also contains thediz (which
we will not describe) that implements tRér and Addr
functions.

Notice that because the PMAP and AMAP modules ar
implemented in a single CAM, the permission andrass
transldion faults hae been combined into a single output.



Figure 4. Simplified ARM 600 diagram
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Similarly, there is only one domainaimsldion fault out-
put.

The cross-domain gic can be implemented in\seral
ways. A CAM could be used to map one domaimiver
to a vector of permissions on all other domaimbers,
which would be demltiplexed by the other domairum-
ber This gpproat becomes siger as the number of possi-
ble domain mmbes inceasesbecause the width of the
data area of the CAM increases.

Another gproat is to use a CAM inded by both
domain mmbes that produces a single cross-domain per
mission. If the number of cross-domain aigms
expected in the system is small, the CAM will neethf
tively few enties, and because the data areads/\wnar
row, the CAM will be fast.

The fully-geneal cross-domain model may not be nec-
essay in practice Often, an pplication is only concered
with pointers gported from or imported into its domain,
or program counter entry to or exit from its domairhe
other domain imolved is not significantTo support ont
this functionality would simplify the cross-domain tar
watre to a set of fouragister/multipl&or pairs and a com-
parator Two of the pairs would be associated with inpor
and entry and inded by the source domain number; the
other two would be associated witkpert and exit and
indexed by the taget domain amber The bits in eacheg-
ister determine if a fault isemerated The compaator
would be used to ebke the other Igic when the sowe
and target domains are different.

The rest of the functionality is simple combtiorc
logic.

« MEMBER is a simple boolean function.

» DCL is a multiplexor that selects a bit@based oN.

* FDU is a priority encoder and some routing logic to
compose the value of the fault status register.

6. The ARM implementation

A subset of our haware design has been implemented
in the memory margement unit of the ARM 600, a @r
cessor being deloped byAdvanced RISC Mdtnes,Ltd.
of Cambidge, England. In this section we describe the
ARM 600 implementton, and how it can be extended in
the future to implement the full dobess mangement
model.

Figure 4 shows a simplified functional diam of the
ARM 600 MMU. It is identical to thegneal model of fi-
ure 1, with two major xceptions. There is no coss-
domain Igic, and there is support fatomain manager
control.

In general,the manger of a domain is not subject to
the same permissions as its clients; instédths full per
missions for its domainTo avoid having to witch the
active permission mapping whemvisching to the man-
agers ewironment (at fault timefor example),the had-
ware piovides a fast @y to turn on full permissions for a
domain. The domain marger control egster (DMCR)
contains a bit for each domain number that indisa
whether full permissions are in effect for that domain.

In the digram, the DMCR is connected to autt-
plexer (DMCL) that selects the bit in the DMCR e
sponding to the cuent domain omber The bit controls a
multiplexer that selects between the output of the PMAP
and a constant encoding full permissions.

Figure 5 shows the implementation of the mapping por
tion of the ARM 600 MMU. It consists of aatlitional
TLB with the addition of the domainumber, which is
loaded from the first-level TLB entries.

Because we did not implement cross-domaiclan
the ARM 600, we wre concerned about the parhance
of altemative wiite-barier implementationslo reduce the
overhead of pge scanning and theanulaity of transac-



Figure 5. ARM 600 implementation details

\

I : > TorionFat
\ J \% \Y
F A F

ON o LPERMIpvap L P lavip
v v v
DN PERM P
i
v
{ B
[ s i ¥ vesle] Dot
Trangiaion Table Unit E CAM PERM P
Base Regster
* P Transiation Favit
vy v
DN PERM P

tion locks, we allow the specifgion of access peris-
sions on submges. Each 4K pge is divided into 1K
subpags. Rge-tale entries contain adnsldion for the
entire paje, and a set of permissions for each sgjgpa
This is similar to the approach taken in the RS/6000 [6].
Only one pimary transldion teble is necessgr This is
one of the major adntags of a single aitess space
model with domain access control support. It is possible to
switch between tasks withoubhangng the TLB or tansla-
tion teble, because access to domains is controlled by the
domain control egister When we designed the MMwe [1]
decided to make the iprary table lame by taditional
standads (16K vs. 4K) so that the secondaryie¢a could
be small (1K vs. 4K).This lovers the w@erhead &r
address-aented services like transaction processing tha
require multiple permission mappings. 2]

7. Conclusion and future directions

Some systems, such as MONAMS] and POMHB],
hawe implemented agnced concepts such as gstent [3]
objects and grbag collection by making radical der-
tures from traditional ahitectues. Havever, there ag
also softvare implementations that take \@ohtage of
“stock” hadware [1]. Such implementations are more eco-
nomical since they don’t need specialdvaare,but the
are often complicated because stockdwaare is designed  [4]
to meet the traditional demands of virtual memory.

Our system model is close to tradition. Most of it can
be implemented on commongeessas by diandng only
the MMU. The model engles new softare directions [5]
while retaining the economy and compatibility of staddar
processor architectures.

In addition to completing ark on an opeating system
based on our model of dess mangementwe are inter

ested in producing a complete implementation of owst-har
ware model.We would like to get somexpelience with
cross-domain baiers to determine the fefctiveness of the
cross-domain permission [tvare Another hadware
direction is to examine other domain controls; frara-
ple, we hae considered using domain controls téeetf
cache management.
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