

Abstract

We introduce the concept of “address-oriented soft-
ware”, which is software that assigns particular meaning
to the values of memory addresses. Such software is often
not well supported by the services of the operating system
in which it operates. We provide some examples of
address-oriented algorithms, and propose a general model
of the operations they use, called “address management”,
which we intend to use as the basis of a new operating sys-
tem. We derive a hardware model from our formal model,
and suggest implementation techniques. A partial imple-
mentation of our hardware model is an integral part of the
ARM 600 processor, currently in development.

1. Introduction

Programs that manipulate pointers usually do so with-
out using knowledge of their actual values. This tendency
is reflected in “safe” languages such as Pascal and Lisp
that admit the concept of an opaque pointer to a data
object, but provide no operations to get the memory
address from a pointer. However, there is a class of algo-
rithms, which we call

address-oriented

, that do rely on the
values of memory addresses. For example, a generational
garbage collector may determine the age of an object by
examining its address, an object-oriented language imple-
mentation may define an object’s identity by its address,
and a persistent programming system may provide a trans-
lation between different address spaces and object repre-
sentations while preserving address-based object identity
in both.

Most operating systems and processors in current use
have a system model that is designed to support well-
known address-oriented services like virtual memory and
memory-mapped files. Because of this limited model, it is
sometimes difficult to implement a new address-oriented
algorithm on one of these systems. For example, Mach
[10] provides some low-level address-oriented mecha-

nisms with its “external pager” interface [16], but (as the
name implies) clients of that interface must be structured
like demand-paged virtual memory services.

We are developing a new operating system that is con-
ducive to the implementation of new address-oriented
algorithms. Specifically, we have derived a simple set of
concepts we call

address management

 that can describe a
wide range of address-oriented algorithms. We intend to
use this model of address management as the basis of our
operating system. The model is described in Section 2.

The development of our model has been guided by the
desire to support several useful algorithms, some of which
have been hard to implement on existing operating sys-
tems. We present a brief survey of some of these algo-
rithms in section 3, along with an interpretation of each in
terms of address management. With this section as motiva-
tion, we proceed in section 4 to formalize our model of
address management.

We have designed new memory management hardware
to provide efficient support for our software abstractions.
Conventional memory-management hardware is optimized
to support virtual memory, which makes efficient imple-
mentation of more general operations difficult. The model
described here can be translated quite directly into hard-
ware. In section 5, we extend the formal model slightly
and use it to develop a hardware architecture.

Part of the hardware design of section 5 has been
implemented for the ARM 600

processor, currently in
development. Section 6 briefly describes that implementa-
tion.

2. Address management

In our model, a computer system contains many coop-
erating tasks. Some tasks provide address-oriented ser-
vices such as garbage collected heaps, persistent object

ARM and ARM 600 are trademarks of Advanced RISC Machines, Ltd.,
Cambridge, England.

A Model for Address-Oriented Software and Hardware

Walter R. Smith
Robert V. Welland

Apple Computer, Inc.
Cupertino, California 95014

wrs@apple.com

,

welland@apple.com

From

Proceedings of the 25th Hawaii International Conference on System Sciences (HICSS-25)

, Vol. I, pp. 720–729.

Copyright

 1992 IEEE. All Rights Reserved.

stores, virtual memory, or memory-mapped files to other
tasks. These services are presented to their clients as spe-
cial regions of memory that behave in particular ways.

2.1 Tasks and the single address space

Tasks

 are independent threads of control that share an
address space. There is one address space for the entire
system. This simplifies the model, and provides important
benefits in the operating system.

Separate address spaces are useful for isolation of pro-
grams from one another, but that isolation makes it harder
for programs to cooperate. For example, implementation
of shared code libraries is more difficult with multiple
spaces than without. Unwanted memory access can be pre-
vented with permissions; separate spaces are not necessary
for protection.

The size of the single address space might be a concern,
but persistent programming languages alleviate address
space limitations. A persistent object store with an address
space larger than the processor’s address space requires
some mechanism for translating machine addresses to per-
sistent addresses. This effectively renders the size of the
processor’s address space irrelevant, as long as it is large
enough to accomodate a reasonable working set, because
work is really taking place in the larger persistent address
space. Support for persistent languages is an important
goal of ours.

The most important advantage of the single address
space model is the possibility of system-wide object iden-
tity defined by the virtual addresses of objects. Since no
two objects can occupy the same address, object addresses
can be used as unique identifiers or capabilities throughout
the system.

2.2 Domains

The system address space is partitioned into

domains

.
A domain is a possibly non-contiguous set of addresses.
Domains do not overlap, so an address can be in only one
domain. Each domain has an associated task, called its

manager

, that provides the service associated with the
domain.

Domains are associated with

controls

, which affect the
execution of memory access operations. The set of con-
trols is open-ended. In this paper we will consider only
two controls: virtual-to-physical address translation and
access permissions.

2.3 Environments

Each task operates in a context called an

environment

that defines its relationship to the domains in the system.
Environments may be shared among similar tasks.

2.4 Mappings

During instruction execution, various translations are
performed on addresses. These translations are defined by

mappings

. The most important mappings are the virtual-
to-physical address mapping and the address-to-permis-
sions mapping.

2.5 Faults

A

fault

 is an event generated by the execution of an
instruction. The execution process will halt an instruction
and

signal

 a fault if the appropriate conditions are met. For
example, a fault is signalled when a memory access is
attempted that is disallowed by the address-to-permissions
mapping. A signal is usually passed to the manager of
some domain determined by the type of fault and the oper-
ands of the instruction. Depending on the situation, the
instruction may be restarted after the fault is handled.

2.6 Barriers

A barrier

 is a restriction of read access, or a restriction
of the flow of addresses or control flow between domains.
Violation of the barrier causes a fault to be signalled,
which in turn causes some action to be taken. There are
three kinds of barriers:

A

read barrier

 restricts reading from a location.
A

write barrier

 restricts writing pointers into a domain
when they point into another domain.

A

control-flow barrier

 restricts program counter move-
ment between domains.

Write barriers and control-flow barriers are called

cross-domain

 restrictions, because they are relations
between domains.

2.7 Address detection

A write barrier only applies when the datum being writ-
ten is an address. In order to implement write barriers, the
system must be able to distinguish pointer data from non-
pointer data. This is a common requirement of address-ori-
ented systems such as garbage collectors. The usual solu-
tion is to use tag bits in each datum to flag the pointers.
This can be implemented in hardware or software; the spe-
cific details are not important to our discussion.

3. Typical address-oriented services

This section describes some address-oriented services
that we are particularly interested in supporting. For each
algorithm, we show how it can be implemented within our
model of address management.

3.1 Virtual memory

A virtual memory service [7] allows a program to use
mass storage as working memory by providing the illusion
of a large physical memory. The service ensures that its
clients will be able to allocate and use memory without
bothering to manage physical memory. Physical memory
is used as a cache for the backing store, which is kept on a
mass storage device. By manipulating memory permis-
sions, the available physical memory is invisibly supplied
to the client where it is needed at the moment.

The service defines a region of address space that will
behave as the virtual memory. Within this space, some
pages will be “valid”, meaning that they are mapped to
addresses in physical memory; others will be “invalid”,
meaning that they have no associated physical memory,
and are either unallocated or swapped out to disk. This is
implemented by manipulation of the virtual-to-physical
address mapping.

The service is notified when a client attempts to access
an invalid page. The service chooses a set of pages that
will be swapped in (presumably including the one the cli-
ent wants). It changes the address-to-permission mapping
for the set to “no access”, maps physical memory into the
pages, fills the memory with appropriate data (usually read
from the storage device), and releases the permissions so
the clients can access the new data. When physical mem-
ory becomes scarce, the service needs to pick some valid
pages and swap them out, once again unmapping them and
preventing client access.

3.2 Garbage collectors

In a garbage-collected system, garbage is storage that is
no longer accessible by “legal” language operations. A
garbage collector finds garbage and makes its storage
available for use. Many garbage collectors do this by find-
ing all storage objects that are

not

 garbage and eliminating
the rest. Non-garbage objects are found by recursively fol-
lowing all pointers contained in storage objects, starting at
a set of root objects, which includes global variables and
the processor state of all tasks. We will consider three
algorithms for garbage collection: stop-and-copy [4], con-
current [1], and generation scavenging [13].

Stop-and-copy collector:

 Memory is divided into two
regions, called

from-space

 and

to-space

. During normal
execution, objects reside in to-space; from-space is not
used. When to-space is exhausted (or nearly so), process-
ing halts. The identities of the spaces are exchanged
(

flipped

): from-space becomes to-space, and vice versa.
The root objects are copied into to-space. The objects in
to-space are then scanned for pointers into from-space.
When such a pointer is found, the referenced object in

from-space is copied to the end of to-space, where it will
eventually be scanned, and the pointer in the object being
scanned is updated to refer to the referenced object’s new
location. A forwarding pointer is left in place of each cop-
ied object, so later references to the object can be updated.

This process has the effect of copying all the reachable
objects into to-space, and updating all the pointers in the
objects to refer to the locations of the copies. When all the
reachable objects have been copied, any objects left
behind in from-space are garbage, and from-space can be
reclaimed. Processing resumes, and the algorithm repeats.

Concurrent collector:

 The concurrent collector is like
the stop-and-copy collector, but it does not require the cli-
ents to stop running while the collection occurs. It
enforces a requirement that the client is not allowed to
read pointers to from-space, and thus cannot tell that the
collection is incomplete.

The restriction on clients’ reading addresses in from-
space is a read barrier, which is implemented by manipu-
lating the address-to-permission mapping. After the flip,
all memory that could contain addresses in from-space is
protected from client access by turning off the clients’ read
access, and the copying process begins. When a page in to-
space has been scanned, all the pointers in the page have
been translated into to-space pointers; the client can access
it without seeing from-space addresses, so the protection
on that page can be removed. If the client attempts to
access a protected page, a fault is signalled and the collec-
tor is notified; it immediately scans and translates that
page, unprotects it, and allows the client to proceed.

Generation-scavenging collector:

 Most objects
become garbage very soon after being allocated, and older
objects are less likely to become garbage. Generation-
scavenging collectors exploit this information by concen-
trating their efforts on younger objects. Memory is divided
into multiple regions called

generations

, which are
ordered by age and can be independently garbage-col-
lected (

scavenged

). Objects are created in the youngest
generation. When an object has survived several scav-
enges, it is moved to the next-older generation. Older gen-
erations are scavenged less frequently than newer
generations.

To scavenge generations independently, the collector
must be able to determine which objects in a generation
are referenced from other generations, since these objects
must not be collected even if there are no references to
them within their own generation. It is uncommon for an
object to reference objects younger than itself, so refer-
ences from older generations to newer generations can be
recorded with low overhead (old objects that reference
newer objects are called the

remembered set

). Because ref-

erences from younger to newer objects are not remem-
bered, it is necessary when scavenging a generation to
scavenge all younger generations at the same time; this is
not much additional effort.

The collector must detect addresses being written to a
newer generation than their own. This is an address-flow
barrier. One domain is assigned to each generation, and
appropriate cross-domain restrictions are created. Writes
of addresses to newer generations signal cross-domain
faults to the collector, which records them for future use.

There are alternative implementations of remembered
sets [17]. The collector can write-protect older generations
and record pages that were touched, then later scan the
pages looking for references to newer generations. This
obviously adds overhead to the collection, since more
objects than necessary must be scanned, but it may be
more efficient depending on the available hardware. A
software-only implementation is also possible; inline code
can be generated before all writes that quickly marks a
data structure with the location of the writes. Since writes
are uncommon, this may be efficient.

3.3 Persistent object store

A persistent object store [2] is a repository for data
objects that outlive the programs that created them. There
are many widely varying definitions and implementations
of persistent object stores. Because it uses several features
of our model, we will concentrate on Paul Wilson’s pro-
posed scheme in [15], although similar techniques are
used by ObjectStore [3] and Cricket [12].

This kind of store is similar to virtual memory in that
objects are mapped into memory from a disk. However,
because the store has its own object addressing scheme,
addresses of objects in the store are not the same as mem-
ory addresses. For example, they may be larger than mem-
ory addresses, or store addresses may refer to whole
objects rather than byte offsets. Objects in the store con-
tain pointers in this format, yet clients access objects as
though they were present in memory in the usual form,
with pointers in the format of memory addresses. Before
the client can access an object, its pointers must be trans-
lated.

When the store is opened, the root objects of the store
are read into memory and translated to memory format.
Vir tual address space is allocated for the objects refer-
enced by the root objects, but no physical memory is
mapped into it, so the service is signalled whenever clients
attempt to read or write to this space. Upon notification,
the service reads the appropriate object into memory and
translates it, allocating space for the objects referenced by
the object as before, and the process repeats.

The store has a requirement like that of the concurrent
garbage collector, only instead of from-space addresses, it

is persistent pointers that clients are not allowed to see.
The collector translates an object by following pointers
from the object into from-space, copying referenced
objects into to-space and updating the pointers. A store
translates an object by allocating virtual addresses for the
referenced objects and putting them into the object. Like
the collector, the store manipulates the permission map-
ping of its domain to intercept reads and writes to untrans-
lated pages.

The store is also similar to a virtual memory service in
that it dynamically assigns physical memory to the parts of
the store that are resident in memory. It manipulates the
virtual-to-physical address mapping of its domain to
assign physical memory where it is needed.

Like the generation scavenging garbage collector, the
store must detect cross-domain address operations; in par-
ticular, it needs to know about pointers from persistent
objects to transient objects, so it can make those transient
objects persistent. This is an address-flow barrier like the
intergenerational one, and it may be implemented in the
same ways.

3.4 Transaction control

In a transaction-based system [9], multiple tasks share
the same data. Simultaneous access to the data is con-
trolled by making the tasks participate in

transactions

,
which are sequences of operations that are combined into
single atomic actions. Tasks acquire and release

locks

 on
data in the course of a transaction; by tracking the manipu-
lation of the locks, the transaction system can enforce ato-
micity by aborting conflicting transactions.

Systems such as Cricket [12] provide page-based locks
without requiring clients to explicitly acquire and release
them, through manipulation of permission mappings for
individual tasks. At the beginning of a transaction, a client
task has no permissions on the transaction domain. If a cli-
ent attempts to read from a page, the transaction manager
assigns that client a read lock on that page, gives the client
read access to the page, and allows the client to proceed.
At this point, the client can read the page freely, but the
service will still be signalled if the client tries to write to
the page, or if another client accesses the page. The rest of
the locking system is similarly implemented.

Transaction services have a requirement unique among
the services described here: different clients of the service
need different permissions for the service’s domain. The
set of locks held by a client determines the permissions
that client has. Each task runs in a unique environment.

4. A formal model of address management

In section 2, we informally described our model. We
now express it in more formal terms.

4.1 Definitions

V

 is the set of addresses generated during an address
operation; this set is often called the “vir tual address
space” of the processor.

P

 is the set of addresses used to
access physical memory.

E

 is the set of environments.

AT

 = { R, W, IF} is the set of access types (read, write,
and instruction fetch).

Perm

 is the set of access permissions, which is the pow-
erset of

AT

 (that is, {

∅

, {R}, {W}, {IF}, {R, W}, {R, IF},
{W, IF}, {R, W, IF}}.

D

 is the set of domains. A domain is a tuple <

S

,

AMap

,

PMap

, …>, where

S

⊂

V

 is the set of addresses in the
domain,

AMap

:

S

→

P

 is a function mapping the domain
into physical memory, and

PMap

:

E

→

 (

S

→

Perm

) is a
function providing environment-specific permissions for
the domain.

AMap

 and

PMap

 are controls of the domain;
there may be other controls that do not pertain to this dis-
cussion. Domains do not overlap: no address appears in
more than one domain’s

S

 (although some addresses may
not be in any

S

).

DC

:

V

→

D

 is a function mapping addresses to their
domains (a “domain classifier”).

DC

(

v

) is the domain <

S

,

Amap

,

Pmap

, …> such that

v

∈

S

. Domains do not neces-
sarily cover the address space, so DC may not be defined
for some

v

∈

V

.

Data

 is the set of data representations available in the
processor.

Ptr

:

Data

→

 {

true

,

false

} is a function that is

true

 for
all representations of pointers.

Addr

:

Data

→

V

 is the function that determines the
address of a pointer represented by a datum.

CD

:

D

×

D

→

Perm

 is the function that defines cross-
domain access permissions.

4.2 Instruction execution

All operations in our model take place during the exe-
cution of an instruction. An instruction may be a

read

,
write, or non-memory instruction. “Executing” the instruc-
tion means determining the physical target addresses and
generating appropriate faults; we will ignore other aspects
of execution. Instructions are executed in the context of an
environment e.

The common feature of all instruction executions is a
procedure we will call Translate(v, t). Given a virtual
address v ∈ V and an access type t ∈ AT, it either deter-
mines the physical address or signals a fault.

Translate(v, t):
1. Let d = DC(vtarget) be the domain <S, Amap,

Pmap, …>. If DC(vtarget) is undefined, signal a
domain translation fault.

2. Let eperm = Pmap(e). If Pmap(e) is undefined,
signal a domain access fault.

3. Let p = Amap(v). If Amap(v) is undefined, signal
an address translation fault.

4. Let perm = eperm(v). If eperm(v) is undefined,
signal a permission translation fault.

5. If t ∉ perm, signal a permission violation fault.
6. Use p as the physical target address.

We also define a procedure CheckDomains(v1, v2, t).
Given two virtual addresses v1 and v2 and an access type t,
it performs the cross-domain permission test. It assumes
DC(v1) is known to be defined.

CheckDomains(v1, v2, t):
1. Let d1 = DC(v1).
2. Let d2 = DC(v2). If DC(v2) is undefined, signal a

domain translation fault.
3. Let perm = CD(d1, d2). If CD(d1, d2) is unde-

fined, signal a cross-domain translation fault.
4. If t ∉ perm, signal a cross-domain permission

fault.
All instructions perform an instruction fetch operation,

which has two target addresses: vcurrent, the address of the
current instruction, and vnext, the address of the next
instruction to be executed. vnext will usually be the loca-
tion immediately after vcurrent, except in the case of
branches. An instruction fetch is executed in two steps:

1. Determine the physical address of the next
instruction using Translate(vnext, IF).

2. CheckDomains(vnext, vcurrent).
Non-memory instructions perform only the instruction

fetch operation. Other instructions process either one or
two target addresses in addition to performing their
instruction fetch.

A read instruction has a single target address, vsource,
the address to be read. It determines the physical source
address using Translate(vsource, R).

A write instruction has a target address vdest, which is
the address to be written into, and a datum which is to be
written there. If they are writing a pointer, they have
another target address Addr(datum). The two-address pro-
cedure is as follows:

1. Determine the physical destination using Trans-
late(vdest, W).

2. If Ptr(datum) is true, CheckDomains(vdest,
Addr(datum)).

5. Hardware support

The address-management model can be implemented in
hardware. In fact, implementations of a subset of it
(namely the virtual-to-physical and address-to-permis-
sions mappings) are common in standard memory man-
agement hardware. In this section, we explain how our
broader model can be implemented.

5.1 Extended formal model

For better explication of the hardware implementation,
we introduce a few new items into our model of address
management.

DN is the set of domain numbers. A domain number is
a small integer that represents a domain.

Dnum:D → DN is a function mapping domains to
domain numbers. The operating system chooses appropri-
ate assignments of domain numbers among the domains in
use at any given time.

DCR:DN → { true, false} is a function that indicates
the domain numbers whose domains’ Pmaps are defined
for the current environment. Let e be the current environ-
ment and d be the domain <S, Amap, Pmap, …> such
that Dnum(d) = dn. Then DCR(dn) = true if Pmap(e) is
defined.

Faults = { domain translation, domain access, address
translation, permission translation, permission violation,
domain translation, cross domain permission} is the set of
faults.

A fault status is a tuple <DN1, DN2, A, F>, where DN1
and DN2 are domain numbers, A ∈ AT is an access type,
and F ∈ Faults is a fault.

5.2 Hardware architecture

See figure 1 for a block diagram of the abstract hard-
ware architecture, which is basically a data-flow represen-
tation of the model in section 4. This design is not suitable
for direct hardware implementation, but it can be trans-
formed into one that is.

Figure 2 shows the building blocks of the architecture.

Each block represents some portion of the formal model.
• DC (domain classifier) accepts an address input V and

produces two outputs: a fault F, and a domain number
DN. If DC(V) is defined, F is set to false and DN is set to
Dnum(DC(V)). Otherwise, F is set to true and DN is
undefined.

• TDC (tagged domain classifier) accepts a datum as input
and produces three outputs: a fault F, an enable EN, and
a domain number DN. It combines a domain classifier
and the Ptr and Addr functions.
If Ptr(datum) is true, EN is set to true, and the domain
classifier is used to find Dnum(DC(Addr(datum))). F
and DN are the outputs of the domain classifier.
If Ptr(datum) is false, EN is set to false, F is set to false,
and DN is undefined.

• AMAP (address mapping) accepts an address input V
and produces two outputs: a fault F, and a physical
address P. It is the composite of all domains’ Amaps. If
Amap(V) is defined by some domain, F is set to false and
P is set to Amap(V). Otherwise, F is set to true and P is
undefined.

Figure 2. Building blocks

DCL

DN
S

Member

PERM

AT
F

CDL

DN1

PERM
F

FDU

F
S

F EN
DN2

AT
DN1
DN2

Fa
ult

s

TDC
Datum

EN DN
F

DC
V

DN
F

AMAP
V

P
F

PMAP

PERM
F

V

Figure 1. Abstract hardware

TDC
Datum

EN DN
F

DC
V

DN
F

AMAP
V

P
F

PMAP

PERM
F

DCL
DN

S

Member

PERM

AT
F

CDL

DN1

PERM
F

FDU
F

S

V

F

EN

DN2

AT

DN1
DN2

Fa
ult

s

CPU
V

F
AT

Datum

Member

PERM

AT
F

Faults

Memory

P

AT
Datum

Domain
Control
Register

Fault
Status
Register

• PMAP (permission mapping) accepts an address input V
and produces two outputs: a fault F, and a set of permis-
sions Perm. PMAP is similar to AMAP; it is the compos-
ite of all domains’ Pmap(e), where e is the current
environment.

• DCL (domain control logic) accepts a domain number
DN and produces a fault output F, which is true or false
depending on the contents of the domain control register
input S. The register contains a bit for each possible
domain number; F is determined by the bit correspond-
ing to DN.

• MEMBER is an implementation of the relation ∉.
F = AT ∉ Perm.

• CDL (cross-domain logic) accepts two domain number
inputs DN1 and DN2, and an enable input EN, and pro-
duces two outputs: a fault F, and a set of permissions
Perm. If EN is false, F is set to false and Perm is set to
AT (all permissions). If EN is true, then if CD(DN1,
DN2) is defined, F is set to false and Perm is set to
CD(DN1, DN2). Otherwise, F is set to true and Perm is
undefined.

• FDU (fault dispatch unit) accepts one input for each
member of Faults, as well as two domain numbers DN1
and DN2 and an access type AT. It has two outputs, a
combined fault F and a fault status S. If any of the fault
inputs are true, F is set to true and S is set to a represen-
tation of the fault status <DN1, DN2, AT, fault>, where
fault is the highest-priority fault type whose correspond-
ing input is true. If none of the fault inputs are true, F is
set to false and S is undefined.

5.3 Implementation details

In order to produce a real hardware design, the abstract
components in the previous section must be transformed
into appropriate hardware structures.

The TDC, DC, PMAP, and AMAP modules can be
implemented as a pair of content-addressable memories
(CAMs) and shared table-walking logic (see Figure 3).

The CDT (cross-domain table) is a dual-ported CAM
that accepts two addresses and delivers two domain num-
bers. The size of the CAM depends on the granularity of
domain sizes.

The TLB (translation lookaside buffer) is a single-
ported CAM that accepts a virtual address and delivers a
physical address and a set of permissions. This is a stan-
dard component of most memory-management units. The
size of the CAM depends on the page size of the transla-
tion structure.

The table-walking unit is activated when either the
CDT or TLB misses. It traverses a two-level data structure
in memory to locate the needed information. The location
of this structure is defined by the translation table base
register. For a CDT miss, only the first level is used,
because the domain information only resides in first-level
entries. Both levels are always traversed for a TLB miss.

The table-walking unit also contains the logic (which
we will not describe) that implements the Ptr and Addr
functions.

Notice that because the PMAP and AMAP modules are
implemented in a single CAM, the permission and address
translation faults have been combined into a single output.

TDC

Datum

EN DN
F

DC

V

DN
F

AMAP

V

P
F

PMAP
PERM

F
V

EN DN2 DN1 PERM P

Datum V

Domain Translation Fault
Address/Permission
Translation Fault

CDT

P

Address/Permission
Translation Fault

 Domain

Translation Table
Base Register

Datum

DN DN

Data
CAM

V
Miss
Miss

Table
Walking

Unit
Miss

Datum

V

Data
CAM

V

PERM

TLB
V

Datum

DFAFEN

implementation

PERM

P

DN1 DN2 EN

Figure 3. Mapping and domain classifier

Translation Fault

Similarly, there is only one domain translation fault out-
put.

The cross-domain logic can be implemented in several
ways. A CAM could be used to map one domain number
to a vector of permissions on all other domain numbers,
which would be demultiplexed by the other domain num-
ber. This approach becomes slower as the number of possi-
ble domain numbers increases, because the width of the
data area of the CAM increases.

Another approach is to use a CAM indexed by both
domain numbers that produces a single cross-domain per-
mission. If the number of cross-domain operations
expected in the system is small, the CAM will need rela-
tively few entries, and because the data area is very nar-
row, the CAM will be fast.

The fully-general cross-domain model may not be nec-
essary in practice. Often, an application is only concerned
with pointers exported from or imported into its domain,
or program counter entry to or exit from its domain. The
other domain involved is not significant. To support only
this functionality would simplify the cross-domain hard-
ware to a set of four register/multiplexor pairs and a com-
parator. Two of the pairs would be associated with import
and entry and indexed by the source domain number; the
other two would be associated with export and exit and
indexed by the target domain number. The bits in each reg-
ister determine if a fault is generated. The comparator
would be used to enable the other logic when the source
and target domains are different.

The rest of the functionality is simple combinatoric
logic.
• MEMBER is a simple boolean function.
• DCL is a multiplexor that selects a bit in S based on DN.
• FDU is a priority encoder and some routing logic to

compose the value of the fault status register.

6. The ARM implementation

A subset of our hardware design has been implemented
in the memory management unit of the ARM 600, a pro-
cessor being developed by Advanced RISC Machines, Ltd.
of Cambridge, England. In this section we describe the
ARM 600 implementation, and how it can be extended in
the future to implement the full address management
model.

Figure 4 shows a simplified functional diagram of the
ARM 600 MMU. It is identical to the general model of fig-
ure 1, with two major exceptions. There is no cross-
domain logic, and there is support for domain manager
control.

In general, the manager of a domain is not subject to
the same permissions as its clients; instead, it has full per-
missions for its domain. To avoid having to switch the
active permission mapping when switching to the man-
ager’s environment (at fault time, for example), the hard-
ware provides a fast way to turn on full permissions for a
domain. The domain manager control register (DMCR)
contains a bit for each domain number that indicates
whether full permissions are in effect for that domain.

In the diagram, the DMCR is connected to a multi-
plexer (DMCL) that selects the bit in the DMCR corre-
sponding to the current domain number. The bit controls a
multiplexer that selects between the output of the PMAP
and a constant encoding full permissions.

Figure 5 shows the implementation of the mapping por-
tion of the ARM 600 MMU. It consists of a traditional
TLB with the addition of the domain number, which is
loaded from the first-level TLB entries.

Because we did not implement cross-domain logic in
the ARM 600, we were concerned about the performance
of alternative write-barrier implementations. To reduce the
overhead of page scanning and the granularity of transac-

Figure 4. Simplified ARM 600 diagram

V

DN
F

DC AMAP

V

P
F

PMAPPERM
F

DCL

DN

S

FDU

F
S

V

F

DN

Fa
ult

s

CPU

V

F

AT
Datum

Member

PERM

AT
F

Translation Faults

Memory
P

AT

Datum

Domain
Control
Register

Fault
Status
Register

DMCL

DN

S
O

Domain
Manager

Register
Control

Full

Domain Access Fault

Permission Fault

tion locks, we allow the specification of access permis-
sions on subpages. Each 4K page is divided into 1K
subpages. Page-table entries contain a translation for the
entire page, and a set of permissions for each subpage.
This is similar to the approach taken in the RS/6000 [6].

Only one primary translation table is necessary. This is
one of the major advantages of a single address space
model with domain access control support. It is possible to
switch between tasks without changing the TLB or transla-
tion table, because access to domains is controlled by the
domain control register. When we designed the MMU, we
decided to make the primary table large by traditional
standards (16K vs. 4K) so that the secondary tables could
be small (1K vs. 4K). This lowers the overhead for
address-oriented services like transaction processing that
require multiple permission mappings.

7. Conclusion and future directions

Some systems, such as MONADS [11] and POMP [5],
have implemented advanced concepts such as persistent
objects and garbage collection by making radical depar-
tures from traditional architectures. However, there are
also software implementations that take advantage of
“stock” hardware [1]. Such implementations are more eco-
nomical since they don’t need special hardware, but they
are often complicated because stock hardware is designed
to meet the traditional demands of virtual memory.

Our system model is close to tradition. Most of it can
be implemented on common processors by changing only
the MMU. The model enables new software directions
while retaining the economy and compatibility of standard
processor architectures.

In addition to completing work on an operating system
based on our model of address management, we are inter-

ested in producing a complete implementation of our hard-
ware model. We would like to get some experience with
cross-domain barriers to determine the effectiveness of the
cross-domain permission hardware. Another hardware
direction is to examine other domain controls; for exam-
ple, we have considered using domain controls to affect
cache management.

8. Bibliography

[1] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time
concurrent collection on stock multiprocessors. Proceed-
ings of the SIGPLAN ’88 Conference on Programming
Language Design and Implementation, ACM SIGPLAN
Notices, vol. 23(7), July 1988, pp. 11–20.

[2] M.P. Atkinson, P.J. Bailey, W.P. Cockshott, K.J. Chisholm,
and R. Morrison. Progress with persistent programming.
Technical Report PPR-8-81, Computer Science Depart-
ment, University of Edinburgh, 1981.

[3] Thomas Atwood. Two approaches to adding persistence to
C++. In Implementing Persistent Object Bases: Principles
and Practice, Alan Dearle, Gail M. Shaw, Stanley B.
Zdonik, eds., Morgan Kaufmann, San Mateo, California,
1990, pp. 369–383.

[4] H. G. Baker. List processing in real time on a serial com-
puter. Communications of the ACM, vol. 21(4), April 1978,
pp. 280–294.

[5] W.P. Cockshott. Design of POMP—a Persistent Object
Management Processor. In Third International Workshop
on Persistent Object Systems (Newcastle, Australia, 1989),
J. Rosenberg and D.M. Koch, eds. Springer-Verlag, New
York, 1989, pp. 367–376.

Figure 5. ARM 600 implementation details

DC

V

DN
F

AMAP

V

P
F

PMAPPERM
F

V

DN PERM P

V

 Translation Fault

P

 Translation Fault

Translation Table
Base Register

Table
Walking

Unit
Miss

V

Data
CAM

V

PERM

TLB
V

F

S

PERM

P

DN

implementation

[6] Randy D. Groves and Richard Oehler. RISC System/6000
architecture. In IBM RISC System/6000 Technology,
SA23-2619, International Business Machines Corporation,
1990.

[7] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H.
Sumner. One-level storage system. In Computer Struc-
tures: Principles and Examples, D. P. Siewiorek, C. G.
Bell, and A. Newell (editor), McGraw-Hill, New York,
1982, pp. 135–148. Originally in IRE Transactions, EC-
11, vol. 2, April 1962, pp. 223–235.

[8] David A. Moon. Garbage collection in a large Lisp system.
ACM Symposium on Lisp and Functional Programming
(Austin, Texas, August 1984), pp. 235–246.

[9] J. Eliot B. Moss. Nested Transactions: an Approach to
Reliable Distributed Computing. MIT Press, Cambridge,
Massachusetts, 1985.

[10] Richard F. Rashid. Threads of a new system. Unix Review,
vol. 4(8), August 1986, pp. 37–49.

[11] J. Rosenberg, D.M. Koch, and J.L. Keedy. A capability-
based massive memory computer. In Third International
Workshop on Persistent Object Systems (Newcastle, Aus-
tralia, 1989). J. Rosenberg and D.M. Koch, eds. Springer-
Verlag, New York, 1989, pp. 377–391.

[12] Eugene Shekita and Michael Zwilling. Cricket: a mapped,
persistent object store. In Implementing Persistent Object
Bases: Principles and Practice, Alan Dearle, Gail M.
Shaw, Stanley B. Zdonik, eds., Morgan Kaufmann, San
Mateo, California, 1990, pp. 89–102.

[13] David Ungar. Generation scavenging: a non-disruptive
high performance storage reclamation algorithm. Proceed-
ings of the ACM SIGSOFT/SIGPLAN Practical Program-
ming Environments Conference, ACM SIGPLAN Notices,
vol. 19(5), May 1984, pp. 157–167.

[14] Robert V. Welland. Managing the use of addresses in a
computer system. Patent application, currently in prepara-
tion.

[15] Paul R. Wilson. Pointer swizzling at page fault time: effi-
ciently supporting huge address spaces on standard hard-
ware. Technical Report UIC-EECS-90-6, Electrical
Engineering and Computer Science Dept., University of
Illinois at Chicago, December 1990.

[16] M. Young, et al. The duality of memory and communica-
tion in the implementation of a multiprocessor operating
system. In Proceedings of the 11th Symposium on Operat-
ing System Principles, November 1987.

[17] Benjamin G. Zorn. Comparative performance evaluation
of garbage collection algorithms. Technical Report UCB/
CSD 89/544, Computer Science Division (EECS), Univer-
sity of California, Berkeley, December 1989.

	1. Introduction
	2. Address management
	2.1 Tasks and the single address space
	2.2 Domains
	2.3 Environments
	2.4 Mappings
	2.5 Faults
	2.6 Barriers
	2.7 Address detection

	3. Typical address-oriented services
	3.1 Virtual memory
	3.2 Garbage collectors
	3.3 Persistent object store
	3.4 Transaction control

	4. A formal model of address management
	4.1 Definitions
	4.2 Instruction execution

	5. Hardware support
	5.1 Extended formal model
	5.2 Hardware architecture
	5.3 Implementation details

	6. The ARM implementation
	7. Conclusion and future directions
	8. Bibliography

