

Abstract

Object-oriented user interface frameworks are
usually implemented in a class-based language. We
chose instead to develop a prototype-based language,
NewtonScript, for this purpose. We found that
prototype inheritance has compelling advantages
over classes in the domain of user interface
programming, and can help overcome the memory
constraints of a small machine.

1. Introduction

The benefits of an object-oriented approach to UI
programming are well established. Object-oriented
graphical user interface frameworks, like Smalltalk-
80’s Model-View-Controller system [8], Apple’s
MacApp [4], Metrowerks’ PowerPlant [10], and the
Microsoft Foundation Classes [11], have become
quite common. A user interface toolkit is generally
expected to have an accompanying object-oriented
framework, either integrated to begin with or added
later.

Virtually all of these frameworks are implemented
in a class-based language—not surprising, since the
most popular object-oriented languages are class-
based. However, we have found a prototype-based
language to be much better suited to user interface
programming. This paper reports our experience
using the prototype-based NewtonScript

™

 language
to implement the application framework for Newton

®

[14].
A chronology of the project would be much too

large for this paper, and we don’t have room to
present all the useful things we learned. We have
focused exclusively on the choice of a prototype-
based language and the benefits and disadvantages it
brings.

2. Newton language history

The Newton software platform was created to sup-
port “Personal Digital Assistants” (PDAs): very
small, portable personal computers. At one point, we
intended Newton devices to run simple form-based
applications using a built-in database. The program-
mability would be limited mostly to designing
screen forms and specifying the links between data-
base fields and visible fields. Applications would be
static form descriptions rather than programs. Given
the simplicity of the requirements and the small size
of the machine, a low-level language like C++ was
the obvious choice. We did eventually write much of
the core Newton software in C++.

However, as we refined the design, it became
apparent that more flexibility would be needed from
the application framework, and we found this diffi-
cult to achieve with C++. A two-language architec-
ture evolved as the project progressed. We continued
using C++ for efficiency in low-level components,
but developed a new language called NewtonScript
for the higher-level software, including much of the
user interface toolkit. Newton application developers
work almost exclusively in NewtonScript.

We justify the use of a relatively slow interpreted
language for user interface programming by recog-
nizing that most of an application’s work has to do
with coordinating the user interface, not high-perfor-
mance data structure crunching. That is, in a lot of

Using a Prototype-based Language for User Interface:
The Newton Project’s Experience

Walter R. Smith

Apple Computer, Inc.
1 Infinite Loop, MS 305-2B

Cupertino, CA 95014

wrs@apple.com

Copyright © 1995 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that new
copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request Permissions from Publications Dept, ACM Inc., Fax +1 (212) 869-
0481, or <permissions@acm.org>.

To appear in the Proceedings of the 1995 ACM Conference on Object-Oriented Programming Systems, Languages, and Applications.

application code, logical structure and ease of con-
struction is more important than raw speed. For this
sort of code, a bytecode interpreter is fast enough
most of the time.

When greater speed is necessary, programs move
to a low-level language (C++) to do the operation,
then return to NewtonScript. For common operations
like searching and sorting, we provide a library of
fast C++ functions that NewtonScript programs can
use when necessary. Effective use of these predefined
functions greatly improves application performance.

To give application developers more flexibility,
we have produced a native-code NewtonScript com-
piler, and are in the process of providing C++ tools
that developers can use. We anticipate, however, that
interpreted NewtonScript will remain the core appli-
cation language.

The semantics of NewtonScript evolved in paral-
lel with the rest of the Newton software architecture
[14]. In particular, the language had to integrate well
with the persistent object store and the view system.
Although we were initially skeptical of prototype-
based languages, we eventually discovered that the
prototype-based model was natural for what we were
trying to do.

3. Prototype-based inheritance

The distinguishing characteristic of inheritance in
NewtonScript and other prototype-based languages
[7, 12, 16] is the lack of classes. In these languages,
objects inherit attributes directly from other objects.

A class-based system makes a distinction between

instances

 and

classes

. An instance belongs to a class,
which determines the instance’s structure and behav-
ior. A class acts as a template for its instances, defin-
ing the set of attributes each instance will have, and
as a repository of instance behavior.

A class may be a

subclass

 of another. The subclass
inherits the instance template and behaviors of the
superclass, with some modifications. Although the
values contained in an instance may be changed, the
only way to alter the structure or behavior of an
instance is to create a subclass and use it.

In a prototype-based system, there is no need for a
class/instance distinction; there are only “objects”.
Objects themselves can contain behaviors, and each

object can have a unique structure, not limited to a
predefined template.

Objects can inherit state and behavior from other
objects directly. Each object may specify another
object (or more than one, depending on the language)
from which it inherits attributes.

Prototype-based inheritance has two big advan-
tages: simplicity and concreteness. It is simpler
because the concept of “class” is eliminated, and
rather than two inheritance relations, subclass and
instance, there is only one (usually just called “inher-
itance”). Eliminating this “extra color of chalk”
reduces the cognitive load on the programmer. It is
more concrete because programming consists of
modifying objects directly, rather than modifying
classes to produce an indirect effect on objects. The
process is like assembling a bicycle instead of writ-
ing the assembly manual for a bicycle.

4. The programming dichotomy

Programs with graphical user interfaces usually con-
tain two very different components: the “model” of
the data being manipulated, and the user interface
that manipulates it. Often, these components are best
implemented using different styles of programming.

Class-based programming is intended to make it
easy to share structure and behavior among many
instances. This is ideal for the “model” part of a pro-
gram, which usually involves manipulating a com-
plex but fairly repetitive data structure such as a
database, spreadsheet, or word processing document.
Factoring out all behavior for a group of instances
makes it easier to reason about the entire group at
once. In fact, the benefits of classes in this sort of
programming are sufficiently well established that we
will not present further justification.

The needs of the user-interface side of the program
are different. In contrast to the model, the user inter-
face usually consists of relatively few objects, most
of which appear only once in a given context, and
most of which are unique in small but significant
ways.

For example, consider the dialog box in Fig. 1,
which contains two pop-up menus and two buttons.
The purpose of this dialog box is to set the font and
size of something. Clearly, it has unique behavior.

However, there is at most one such dialog box open
at any given moment. Similarly, each pop-up menu
has unique behavior: one sets the font, the other sets
the size. Again, however, there is only one of each in
existence.

Of course, all pop-up menus have something in
common, and so do all buttons. These commonalities
should be factored out somehow. Generally, how-
ever, the programmer of the

toolkit

 does this factor-
ing; most user interface programming effort is spent
on unique objects.

Creating a class is one of the most complicated
operations in a programming environment. It is
expensive in time, complexity, and cognitive load on
the programmer. Normally, these costs are amortized
over many instances. But in user interface program-
ming, there is no such leverage—most of the objects
are “one-offs”. Such objects do not fit well into the
class-based programming model; in fact, “object-ori-
ented programming” texts commonly advise that if
there is only one instance of a class, something is
probably wrong with the design.

Because of the relative difficulty of subclassing
and the injunctions against “one-offs”, programmers
try to avoid defining subclasses for unique objects.
Class-based user interface code will often substitute
attributes for behaviors, and move behaviors to inap-
propriate places, just to get enough functionality con-
centrated in one place to justify creating a new class.

We have found that prototype-based programming
is ideal for user interfaces. The situation is reversed:
creating unique objects is the

most natural

 operation
in the prototype-based programming environment. It
is easier to reason about and control the interactions
of

individual

 objects—the usual requirement for UI
programming—when the objects themselves are

being programmed directly.
Prototypes do allow factoring when needed, and in

a particularly natural manner. A “prototype” is a
functional (or nearly so) example of a certain kind of
object, rather than a partial description of an object’s
structure and behavior.

*

 Programming an object to be
shared is only slightly more complicated than pro-
gramming an individual object; more importantly, the
same tools and concepts are used to do both.

The concreteness of prototypes shines in the UI
programming domain. The class-based programmer
is constantly shifting between abstraction levels,
from thinking about instance templates (classes) to
thinking about instances. Worse, the programmer has
to alter instances by “remote control”—by editing
code in a class that will result in a change to an
instance later. The programmer in a prototype-based
system, on the other hand, is always editing objects.

As mentioned above, the wonders of the proto-
type-based model do not eliminate the need for a
more structured approach to some parts of an appli-
cation. Class-based programming may be done in
NewtonScript as a

style

 of prototype-based program-
ming, similar to the use of “traits” objects in Self
[15]. This style is explained in more detail elsewhere
[13]; we describe it briefly in section 9 below.

5. Visual tools

Object-oriented UI frameworks are frequently
accompanied by “visual” UI construction environ-
ments (examples include MacApp’s ViewEdit, Pow-
erPlant Constructor, and Visual C++ [11]). Such an
environment allows the views that make up a user
interface implementation to be specified graphically:
an interface can be largely “drawn” rather than
coded. In addition to specifying the location and hier-
archical placement of views, attributes specific to cer-
tain types of views may be specified.

These visual envionments make it easy to create
instances and set their attributes, but not to define
new subclasses; that can only be done by leaving the
visual environment and using a text editor. This is a
major limitation, since an instance may have a unique

*

 A bicycle without paint, perhaps, rather than a bicycle assembly manual
that omits the paint chapter.

Figure 1. Dialog box example

value for an attribute, but cannot have a unique
behavior, since only classes can define behavior. The
visual editor is generally limited to connecting
instances together and editing certain of their
attributes, though it may produce placeholders in the
source code for more complex attributes.

The ease of use of the visual environment is actu-
ally rather subversive, in that it makes the program-
mer even

less

 likely to want to return to the text
editor and create a new subclass.

With a prototype-based UI toolkit, a visual editor
can be both more natural and more powerful than its
class-based counterpart. Visual environments are
ideal for editing characteristics of individual
instances. In the prototype-based model,

all

 program-
ming takes this form. Editing a method is the same as
editing a property. It is easy to integrate the code edi-
tor into the visual editor, and then there is no need to
switch to a text editor to change the code (unless you
want to).

At least one prototype-based visual environment
[6] has taken the extreme approach of giving every
object in the system a visual representation. The
Newton development environment, Newton Toolkit
[3], takes a more moderate approach, showing the
programmer two simultaneous views of the user
interface, one in graphical form and the other as a
hierarchical object browser. Only view objects appear
in the graphical view. (See Fig. 2.)

The view objects are shown both graphically, as
they will be interpreted visually by the view system,
and as collections of slots. These two editors show all
the attributes and behaviors of the objects; no other
environment for editing view behavior is necessary.

Newton Toolkit is currently somewhat weak at
supporting non-UI code. The browser is really just a
“frame hierarchy” editor, with few features specific
to views, so it can be used to edit non-view frames.
Plain text files are also supported as a least common
denominator. We plan to provide better support for
other kinds of code, particularly class-style code (see
Section 9), in future versions of the Toolkit.

6. Container inheritance

Container inheritance

 is helpful in user interface pro-
gramming, and easily implemented in a prototype-

based object model. NewtonScript’s inheritance sys-
tem was designed to make container inheritance very
convenient.

Newton’s container inheritance was inspired in
part by HyperCard, in which inheritance is based on
a

part-of

 relation, rather than the more typical

is-a

relation. In HyperCard, an application (or “stack”)
consists of parts arranged in a hierarchy: the stack
contains backgrounds, which contain cards; back-
grounds and cards contain fields and buttons (see
Fig. 3). Unhandled messages travel up the hierachy
of containment. For example, if a message is sent to a
button, the system will look for a handler in the but-
ton, then in its card, then in the card’s background,
then in the stack.

Newton’s inheritance model is more general than

Figure 2. Newton Toolkit example. The top window shows
the graphical outline view of the dialog box in Fig. 1. The
lower window shows the same object hierarchy in browser
form.

Stack

Background Background

Card Card

Button Button

Figure 3. HyperCard container inheritance

HyperCard’s. In HyperCard, the set of object types
and their hierarchical arrangement is fixed—it is
impossible to create a new type of object, like a radio
button cluster. Newton lacks this restriction. Also, in
NewtonScript, objects inherit properties (variables) in
addition to message handlers.

Naturally, then, Newton’s idea of container inherit-
ance is more general than HyperCard’s. In addition to
specifying a prototype, an object can specify a con-
tainer object to inherit from. The container path has
lower priority than the prototype path, so the effect
is that container inheritance applies to the “virtual
objects” created by prototype inheritance (see Sec-
tion 7).

General container inheritance is most useful as a
form of “visual scoping”. Views in the Newton sys-
tem are arranged in a hierarchy, and the view objects’
container inheritance paths are connected accord-
ingly. That is, a view inherits from its superviews.

This allows for a natural form of information hid-
ing: a view’s slots are visible to its subviews, but
nowhere else. Thus, the graphical view editor is
showing not only the placement of objects on the
screen, but the “variable scopes” created by container
inheritance as well.

In our dialog box example, the box itself might
contain a slot referring to the object whose font and
size are being set (the “target”), and two others hold-
ing the size and font currently selected (see Fig. 4).
These slots act as variables that are “in scope” in the
menus’ and buttons’ methods, and in the dialog box
itself, but nowhere else in the application.

Each subview can refer to these slots as inherited
variables. Thus, the “Font” menu reacts to a menu
choice by setting the inherited “font” variable, and

the “OK” button sends a message to the inherited
“target” containing the inherited “font” and “size”.

7. NewtonScript inheritance

Before delving into an example, we first need to
present some details NewtonScript. We will not
attempt to explain all of NewtonScript here (more
details can be found in [1, 14]). It is only necessary
to explain how inheritance is defined.

Objects called

frames

 are the basis of object-ori-
ented programming in NewtonScript. A frame is a
collection of tagged slots, each of which contains a
value. Slots can contain references to other objects,
including frames, and can contain function objects
that provide behavior.

Inheritance occurs when the special slot tags

_proto

 and

_parent

 are present in a frame. The

_proto

 slot is used for prototype inheritance;

_parent

 is used for container inheritance. The two
slots are similar in operation, with

_parent

 having
lower priority, but there are some special rules that
make things interesting.

If a

_proto

 slot is present in a frame, it refers to
another frame, whose slots are inherited. For exam-
ple, looking up the tag

Draw

 in the Font menu frame
in Fig. 5 will find the

Draw

 slot in the

_proto

 frame
(the prototype menu). The effect of

_proto

 inherit-
ance is to produce a chain of refinement—a series of
ever-more-specific objects.

Figure 4. Container inheritance. The dialog box defines
slots that can be used as inherited variables by the sub-
views to manage the user interaction.

font: “Courier”
size: 14

font := “Courier”

target:SetFont(font, size)

target: <obj>

Figure 5. A tiny example of _proto inheritance. The
“Font” menu frame inherits menu-like behavior from its
_proto frame, the prototypical menu, and adds its own
specific title and behavior when an item is picked. In gen-
eral, the _proto chain leads from a specific (more
refined) object to progressively less-specific objects.

Most specific Least specific

_proto

text
labelActionScript

...

“Font”
func ...

Draw

Clicked
value

...

The “Font” menu Prototype menu

Assignment of a slot never occurs in a

_proto

frame; an assignment to

value

 will create a new

value

 slot in the outer frame rather than altering the

_proto

 frame. From the point of view of the outer
frame, this has the same effect, since the new slot
overrides the value in the

_proto

. The rule lets us
avoid altering the

_proto

 frame, which is almost
always the right thing to do, since it may be inherited
by many other objects. It is convenient to be able to
specify an initial value in the prototype and get this
“copy-on-write” behavior on assignment, and it saves
memory (see section 10).

The

_parent

 slot works similarly, but has a lower
priority than the

_proto

 slot (that is, the

_proto

 slot
is searched first), and does not have the assignment
restriction. The

_parent

 slot is not searched in

_proto

 frames; only the

_parent

 chain of the
receiver is considered. Whereas a general two-path
inheritance system would produce a complex inherit-
ance tree, these rules have the effect of creating a
simpler comb-like inheritance structure (Fig. 6).

The comb can be viewed as a refinement relation
(

_proto

) embedded within a containership relation
(

_parent

). Each “tooth” of the comb is like a single
“virtual” object; these virtual objects are linked
together by the

_parent

 slots.
The comb structure evolved to support the features

described in this paper. The most important is tradi-
tional prototype-based inheritance, which occurs
through the

_proto

 slot. We also found that the

_proto

 mechanism provides a way to reduce system

RAM requirements—for PDA devices, an important
consideration (see section 10). The

_parent

 slot pro-
vides container inheritance, which is especially use-
ful in user interface programming, and also enables
class-style programming (see section 9).

8. Comparative example

Now we present a simple example of a user interface
implementation in both the class-based and proto-
type-based models. Our example will be the font and
size dialog in Fig. 1.

8.1 Class-based implementation

Of course, there are behaviors and properties com-
mon to all pop-up menus. It makes sense to share
these attributes by putting them in the class PopUp-
Menu.

Each of the menus in this dialog box, however, has
certain unique properties. For our purposes, let’s con-
sider them to be a location, a name (“Font”/“Size”), a
set of items (the list of available fonts/sizes), and a
behavior when an item is picked (setting the current
font/size). There are a few different ways of han-
dling these unique attributes in the class-based frame-
work.

One way to implement the “Font” menu would be
to implement a new class for it, inheriting from the
PopUpMenu class (Fig. 7). There would be attributes
for location and name, and methods for generating
the set of items and handling the item picked. The
general methods in PopUpMenu would send mes-

Figure 6. The NewtonScript “comb”. Looking up the slot x
in the frame marked “receiver” will find the x slot in frame
➃. Assigning to x will create a new x slot in frame ➂. Dot-
ted lines show the “virtual” objects defined by the _proto
relation.

receiver

X

➀ ➁

➂ ➃ ➄

➅ ➆

frame

_parent

_proto

X

Figure 7. A “proper” class-based implementation

FontAndTabsDialog DialogBox

Dialog box

Font menu

FontAndTabs-
DialogFontMenu PopUpMenu

part-of

subclass-of

instance-of

sages to “self” to get this information.
This is a very “proper” class-based implementa-

tion, but from a practical point of view, it leaves
much to be desired. Implementing a new class is usu-
ally an effort: one has to switch editors, engage in a
different mental process, endure a relatively slow
recompilation, and (perhaps worst of all) generate a
unique name for the class (like FontAndTabsDialog-
FontMenu). Of course, all of this must be done for
the “Size” menu as well.

A more common way to implement this dialog
would be to use a basic PopUpMenu class for the
menus (Fig. 8). Each menu instance has attributes
for location, name, and set of items. Because the set
of items must be determined at runtime, there is
code in the FontAndTabsDialog class to set the
menu’s item list attribute. Because the basic PopUp-
Menu class doesn’t know what to do with the values
picked, menu instances have an attribute for a “con-
troller”, which in this case is set to the dialog box.
The PopUpMenu class sends a message to the view
in this attribute when an item is picked; in this exam-
ple, the dialog box reacts to the message by setting
the font or size, depending on the sender. Since the
sender is not ordinarily part of the message, it is
included as an argument.

It doesn’t really make sense to do these menu
manipulations in the dialog box class. The only rea-
son the dialog box must set the menu item list and
respond to the item-picked message is that it’s the
nearest object with enough unique behaviors to jus-

tify the effort of creating a new class. The difficulty
of giving objects unique behaviors has caused the
design to become more coupled and harder to under-
stand, having encouraged the programmer to bend
the rules for “convenience” (and the end result isn’t
really very convenient after all).

8.2 Prototype-based implementation

Now consider this example in a prototype-based
language (Fig. 9). There is still a PopUpMenu object
containing the shared attributes and behaviors of pop-
up menus. However, PopUpMenu in this case is a

prototype

 of a menu. It is a functional menu object; it
just doesn’t have a particular purpose. To use it, the
programmer creates an object that inherits from it
and adds the characteristics needed for its specific
task; in this case, the four attributes mentioned.

The menu object in the dialog box has its own
methods for generating the list of items and reacting
when one is chosen. It’s not necessary to define a
new class (or think of a name for it). By making the
menu object inherit from the prototypical PopUp-
Menu, the programmer is directly expressing that this
menu is the same as the prototype, but with a few
specific new attributes.

To show the advantage of the reduced coupling in
the prototype-based design, imagine that we want to
replace the size menu with an editable text box, so
any size can be written or typed in. In the Fig. 8
design, we have to change the dialog box class,
removing the menu operations and replacing them
with text box operations. In the Fig. 9 design, we

Figure 8. A more typical class-based implementation

FontAndTabsDialog DialogBox

Dialog box

Font menu

PopUpMenu

part-of

subclass-of

instance-of

Figure 9. Prototype-based implementation

DialogBox

Dialog box

Font menu

PopUpMenu

part-of

inherits-from

simply replace the menu object with a text box
object, and put the method that sets the “size” vari-
able in the new object.

In Listing 2, we present the NewtonScript source
code for this dialog example. We ignore one aspect,
which is where the value of “target” comes from; it’s
not important to this discussion. We assume the target
has GetFont, GetSize, and SetFont methods. Also,
keep in mind that

_parent

 slots will be created at
runtime to link the subviews to the dialog box view.

9. Class-based style

As we noted above, there are situations in which
class-based programming is more appropriate than
the prototype-based style described in the last sec-
tion. However, a language with prototype inheritance
can be used in a class-based

style

, as described in
detail elsewhere [13, 15]. We will cover it briefly
here.

To write a class-based program in NewtonScript,
we construct objects corresponding to classes and
instances. For the purposes of this discussion, we will
refer to them by those names, but keep in mind that
in NewtonScript, this is merely a convention, not
something built into the language.

A class object contains state and behavior shared
among all instances, and an operation that creates
new instances. It should also be possible to inherit
from another class. Each instance object needs some
state (as defined by the class), and an inheritance link
to its class.

We can translate this description of the class-based
style directly into NewtonScript objects, as in
Fig. 10. A NewtonScript “class” is an object contain-

ing a

New

 method, which creates an “instance”, and
the instance methods. An “instance” is an object con-
taining only data slots, with a

_parent link back to
the class. The _parent slot is used rather than
_proto for two reasons: it allows slots in the class to
be used as “class variables” that are shared among
instances, which would run afoul of the _proto
assignment rule (see Section 7) if _proto was used,
and instances can use _proto to point to a “prototyp-
ical instance” containing initial values for instance
slots.

There is no explicit support in NewtonScript for
this style of programming; it requires a certain
amount of self-discipline. Because it is so useful,
however, we are investigating ways of supporting it
more explicitly in the compiler and development
environment.

The NewtonScript code for a simple “point” class
is shown in Listing 1.

10. Improved RAM usage

PDAs generally cost well under $1000, are hand-
held, and run on a few standard batteries. This budget
results in severe hardware constraints. The greatest
hardware expense is in the memory subsystem—in
particular, fast system RAM. Thus, the PDA software
designer is in the position of trading off ROM and
processor time for RAM in order to keep hardware
costs down.

In a typical class-based application framework,
views are objects in RAM created from templates.
For example, MacApp uses disk-based descriptions

Figure 10. Class-based NewtonScript style.

New

Add

Rho

Theta

_parent

x

y

2

3

“instance”

“class”

Point := {
New: func (x,y) {_parent: Point, x: x, y: y},
Add: func (pt)

begin
x := x + pt.x;
y := y + pt.y;

end,
Rho: func () ...,
Theta: func () ...,

};

p := Point:New(1,1);
q := Point:New(2,3);
p:Add(q);
r := p:Rho();

Listing 1. Simple class-based example.

fontSizeDialogExample := This is the main dialog box view.
 {_proto: ROM_protoFloater, Its prototype is the generic “floating window”.
 viewBounds: {left: -4, top: 62, right: 168, bottom: 162},
 declareSelf: 'base, At runtime, create a slot “base” that holds a reference to the

dialog box view itself.
 font: nil, Font and size maintain the current settings; they are visible
 size: nil, to this view and its subviews.
 target: nil, Target is the object whose font and size are being set.
 viewSetupFormScript: The view initialization method, which gets the
 func() begin initial values of font and size from the target.
 font := target:GetFont();
 size := target:GetSize();
 end,
 viewChildren: [fontMenu, sizeMenu, The array of subviews (defined below).
 okButton, cancelButton],
 };

fontMenu := This is the “Font” popup menu view.
 {_proto: ROM_protoLabelPicker, Its prototype is the generic labeled menu of values.
 viewBounds: {left: 33, top: 25, right: 151, bottom: 39},
 labelCommands: nil, Placeholder for the array of menu commands (calculated later)
 text: "Font", The menu’s title.
 viewSetupFormScript: The view initialization method gets the set of
 func() available fonts and uses it as the labelCommands array.
 labelCommands := self:GetFontList(),
 textSetup: The menu’s initial value is the current font setting, inherited
 func() font, from the dialog box (the menu’s superview).
 labelActionScript: The method called by the protoLabelPicker when an item is
 func (cmd) chosen from the menu. This sets the inherited “font” variable
 font := labelCommands[cmd], to the chosen font.
 };

sizeMenu := This is the “Size” popup menu view..
 {_proto: ROM_protoLabelPicker, The prototype is once again the labelPicker.
 viewBounds: {left: 33, top: 49, right: 151, bottom: 63},
 labelCommands: ["9", "10", "12", In this menu, the options are fixed.
 "14", "18"],
 text: "Size",
 textSetup: Concatenating the size integer with the empty string is just an
 func() size & "", way to convert it to a string.
 labelActionScript: When a menu item is picked, convert the item to an integer
 func (cmd) and set the inherited “size” variable to the chosen size.
 size := floor(StringToNumber(labelCommands[cmd])),
 };

okButton := The “OK” button view.
 {_proto: ROM_protoTextButton, Its prototype is the generic button labeled by a text string.
 viewBounds: {left: 82, top: 82, right: 110, bottom: 94},
 text: "OK", The button’s title.
 buttonClickScript: The method called by the protoTextButton when the button
 func() begin is clicked. This uses the inherited “font” and “size” variables
 target:SetFont(font, size); to set the target’s font...
 base:Close(); and closes the dialog box (“base” is the “declareSelf” above).
 end,
 };
cancelButton := The “Cancel” button view. Like the “OK” button, except that it
 {_proto: ROM_protoTextButton, just closes the dialog box without setting anything.
 viewBounds: {left: 122, top: 82, right: 166, bottom: 94},
 text: "Cancel",
 buttonClickScript:
 func() base:Close(),
 };

Listing 2. The dialog box example in NewtonScript. For pedagogical reasons, this is not quite a valid NewtonScript pro-
gram. Most importantly, in real life, we souldn’t give names to all these views, and we wouldn’t write this as a text file.

of views. The system follows the descriptions to cre-
ate view objects with the appropriate properties at
runtime. This technique works, and allows declara-
tive view specifications (perhaps in a visual environ-
ment), but the resulting view objects store all of their
attributes in RAM, even those that don’t change dur-
ing execution.

Newton takes advantage of _proto inheritance to
keep most view information out of RAM. (See
Fig. 11.) Rather than descriptions to be parsed, New-
ton applications contain “view templates”, which are
actual frames that will be mapped into read-only vir-
tual memory and used as prototypes for the runtime
views. View objects are created in RAM, but each
one contains only a few slots, mainly a _proto slot
pointing to its view template in the application and a
_parent slot pointing to its enclosing view for con-
tainer inheritance.

Thus, a Newton view starts out taking minimal
RAM. As slots are set, the “copy-on-write” assign-
ment behavior of NewtonScript _proto inheritance
causes the RAM-based frame to expand as necessary.
The end result is that RAM is used only for the infor-
mation that changes; the rest of the view object stays
out of RAM.

11. Problems

Of course, there is a price to pay for the benefits of
prototype-based inheritance. Although we are gener-
ally happy with the system, there are some problems.

11.1 Performance

The most significant disadvantage we have found is
the inherent difficulty of making the search for a slot
fast in this system.

In a class-based system, optimizing slot lookups
is fairly easy. Because all the instances have the same
structure, the location of each slot can be predeter-
mined by examining the classes as methods are com-
piled. Method lookups can be effectively cached
according to class.

Because each object in a prototype-based system
can have a unique structure, these mechanisms don’t
work, or are harder to implement. The problem is
not that good performance is impossible, but rather
that much of the accumulated wisdom of class-based
languages does not apply. Research is in progress on
ways to improve the performance of prototype-based
languages [5, 9].

As mentioned in Section 2, we have found that
through judicious use of low-level languages, appli-
cations can achieve reasonable speed despite these
problems. Also, it should eventually be possible to
compile the “class-based style” of NewtonScript
code more efficiently, using techniques from class-
based languages.

11.2 Visibility

NewtonScript has no provision for private slots. All
objects can see all slots in all other objects. This has
the potential to cause trouble.

protoRadioCluster

protoButtonprotoRadioButton

System ROMApplicationRAM

Figure 11. A view containing four subviews, and its underlying Newton objects. The views are represented by the small
RAM frames on the left, containing only _parent and _proto pointers. The RAM frames’ _proto slots reference the
view frames in the application package, whose _proto slots reference view templates in the system ROM.

The worst problems occur when a prototype object
is modified. If a slot is added, it may accidentally
conflict with a slot in an object derived from the pro-
totype, which will cause unintended behavior. If a
slot is removed, objects that rely on it may stop
working (the actual problem being that they
shouldn’t have been allowed to rely on the slot in the
first place). Class-based systems without privacy
have essentially the same problems, but because there
are more inheritance relationships in a prototype-
based system, there are more chances for them to
occur. Container inheritance is prone to similar acci-
dents, when a slot that should belong to an object is
inadvertently inherited from the object’s container
instead.

It would be better if the programmer could mark
explicitly those slots that should be inherited. We
have some ideas to address this problem, but have
done no serious work on it yet.

11.3 Structure

NewtonScript does not impose much structure on the
programmer. We have sometimes seen a tendency to
write programs in an ad hoc manner because it is so
easy to do. This is perhaps an advantage when writ-
ing a quick test application or prototyping a user
interface, but for industrial-strength work, it is not a
good idea.

For some programmers, it may be better to enforce
program structure through the language or develop-
ment environment. Now that we have gained enough
experience with the system to have some idea of the
“correct” way to write programs, it is probably
worth exploring a more formal approach to program
structure.

12. Conclusion

Using a prototype-based language for Newton was an
unusual choice, but we are pleased with the results.
The inheritance model is easy to understand and use,
and has brought some advantages in memory usage
as well.

Surprisingly, most programmers who learn New-
tonScript don’t seem to miss the traditional class-
based paradigm; rather, we receive many comments
on how unhappy they are to return to traditional lan-

guages. This is at least partially due to the ease of
constructing user interfaces (other aspects of the sys-
tem, such as garbage collection, are also popular).
When a class-based approach is most appropriate,
NewtonScript can adapt to it.

Many of the ideas inspired by prototype-based lan-
guages can be implemented on top of a class-based
language. Designers of user-interface toolkits who
choose to use class-based languages should consider
building some prototype-like features into the tool-
kits, to take advantage of the simplicity and concrete-
ness this paradigm brings.

We would like to end with a plea for more
research on prototype-based languages and program-
ming environments. Judging from our experience, the
area is definitely worthy of further exploration.

13. Bibliography

[1] Apple Computer, Inc. The NewtonScript Program-
ming Language. Apple Computer, 1993.

[2] Apple Computer, Inc. Newton Programmer’s Guide.
Apple Computer, 1993.

[3] Apple Computer, Inc. Newton Toolkit User’s Guide.
Apple Computer, 1993.

[4] Apple Computer, Inc. Programmer’s Guide to
MacApp. Apple Computer, 1992.

[5] Craig Chambers. The Cecil language: specification
and rationale. University of Washington technical
report UW CS TR 93-03-05, 1993.

[6] Bay-Wei Chang and David Ungar. Animation: from
cartoons to the user interface. User Interface Soft-
ware and Technology Conference Proceedings,
Atlanta, GA, November 1993.

[7] Borning, A. H., Classes Versus Prototypes in Object-
Oriented Languages. In Proceedings of the ACM/
IEEE Fall Joint Computer Conference, pp 36-40,
1994.

[8] Adele Goldberg and David Robson. Smalltalk-80:
The Language and its Implementation. Addison-Wes-
ley, Reading, Mass., 1983.

[9] Urz Hölzle and David Ungar. A third-generation
SELF implementation: reconciling responsiveness
with performance. In OOPSLA ’94 Conference Pro-
ceedings, pp. 229–243, Portland Oregon, 1994. Pub-
lished as SIGPLAN Notices 29, 10, October 1994.

[10] Metrowerks Inc. PowerPlant Manual. Metrowerks,
St. Laurent, Quebec, 1994.

[11] Microsoft Corp. Visual C++ documentation.
Microsoft, 1994.

[12] Randall B. Smith, moderator. Prototype-based lan-
guages: object lessons from class-free programming
(panel). In OOPSLA ’94 Conference Proceedings,
pp. 102–112, Portland Oregon, 1994. Published as
SIGPLAN Notices 29, 10, October 1994.

[13] Walter Smith. Class-based NewtonScript program-
ming. PIE Developers, January 1994. Also available

as ftp://ftp.apple.com/pub/wrs/class-based-
NS.ps.

[14] Walter R. Smith. The Newton application architec-
ture. In Proceedings of the 39th IEEE Computer
Society International Conference, pp. 156–161, San
Francisco, 1994. Also available as ftp://
ftp.apple.com/pie/newton/articles/COMPCON-

Arch.ps.

[15] David Ungar, Craig Chambers, Bay-Wei Chang, and
Urs Holzle. Organizing programs without classes.
Journal of Lisp and Symbolic Computation, 4(3),
Kluwer Academic Publishers, June 1991.

[16] David Ungar and Randall B. Smith. Self: the power
of simplicity. In OOPSLA ’87 Conference Proceed-
ings, pp. 227–241, Orlando, Florida, 1987. Published
as SIGPLAN Notices 22, 12, December 1987.

	1Heading - 1. Introduction
	1Heading - 2. Newton language history
	1Heading - 3. Prototype-based inheritance
	1Heading - 4. The programming dichotomy
	1Heading - 5. Visual tools
	1Heading - 6. Container inheritance
	1Heading - 7. NewtonScript inheritance
	1Heading - 8. Comparative example
	2Heading - 8.1 Class-based implementation
	2Heading - 8.2 Prototype-based implementation

	1Heading - 9. Class-based style
	1Heading - 10. Improved RAM usage
	1Heading - 11. Problems
	2Heading - 11.1 Performance
	2Heading - 11.2 Visibility
	2Heading - 11.3 Structure

	1Heading - 12. Conclusion
	1Heading - 13. Bibliography

